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A B S T R A C T

Digital consumer innovations provide functionality to consumers through different impact mechanisms. These
act indirectly on carbon emissions by shaping behaviour. Outcomes include energy/emissions mitigation or,
growth through rebound effects, where energy savings are offset by increasing demand for energy.
In this study we use meta-regression techniques to quantify the relative strength of different impact mecha-

nisms on emissions for a diverse set of digital innovations. We use data from two key synthesis studies, providing
135 estimates of impact across 22 different digital consumer innovations. We measure impacts using different
metrics including activity, energy use, or carbon emissions (CO2/CO2 eq). We refer to these as “emissions-related
outcomes”.
We find strong evidence that impact mechanisms explain differences in emissions-related outcomes between

digital consumer innovations. Digital consumer innovations that influence behaviour by technology ‘substitu-
tion’ e.g., food gamification apps, have a significantly larger impact (44% reduction) than those that ‘coordinate’
e.g., food pairing apps (17% reduction) or those that that improve ‘control’ e.g., smart home appliances (20%
reduction).
Estimates of impact included in energy studies are highly sensitive to boundary decisions and assumptions

made by researchers, introducing further uncertainties into their magnitude and direction. When we control for
variation in study design such as whether emissions-related outcomes data were collected using field experi-
ments, or simulations we find that differences between impact mechanisms are amplified. A further key finding is
that impact mechanisms explain more of the difference between-innovations than deployment context.
Our novel approach of classifying innovations by the underlying causal mechanism through which they

change user behaviour and so energy emissions adds a new dimension to methodological work on indirect im-
pacts for which system boundary and variable definition are not fixed. Identifying causal mechanisms with the
largest benefits for emissions reduction also guides policy, innovators, service providers, and digital users con-
cerned with carbon footprint.

1. Introduction

Digital consumer innovations (DCIs) are novel goods or services
available to consumers. They are digital or digitally enabled, accessed or
controlled through smartphones or other information communication
technologies. They offer alternatives to mainstream consumption prac-
tices. Their use can help reduce carbon emissions in line with the Paris
Agreement on climate change (Creutzig et al., 2022a; International
Telecommunication Union, 2020).

The impact of digitalisation on energy and emissions is direct, indi-
rect and systemic (Horner et al., 2016). Direct impacts include the

energy and emissions footprint in the production, operation and disposal
of information communications technologies, including devices, and
supporting infrastructure (information communication networks, and
data centres). The direct impacts of digitalisation are estimated in the
range of 1.5–4% of global greenhouse gas (GHG) emissions (Freitag
et al., 2021; Bieser et al., 2023). Indirect impacts relate to changes in
processes, systems and user behaviour, are more uncertain and vary
widely across DCIs. Systemic impacts relate to economic activity more
generally (e.g., jobs, skills), society and governance systems and are
even more uncertain as impact pathways are diffuse (Creutzig et al.,
2023). Hilty, Köhler (Hilty et al., 2006) describe an alternative

* Corresponding author.
E-mail address: hazel.pettifor@eci.ox.ac.uk (H. Pettifor).

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

https://doi.org/10.1016/j.jclepro.2024.144412
Received 5 July 2024; Received in revised form 24 October 2024; Accepted 4 December 2024

Journal of Cleaner Production 485 (2024) 144412 

Available online 5 December 2024 
0959-6526/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

mailto:hazel.pettifor@eci.ox.ac.uk
www.sciencedirect.com/science/journal/09596526
https://www.elsevier.com/locate/jclepro
https://doi.org/10.1016/j.jclepro.2024.144412
https://doi.org/10.1016/j.jclepro.2024.144412
https://doi.org/10.1016/j.jclepro.2024.144412
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


taxonomy distinguishing the ordering of these effects from 1st-order
(direct), 2nd-order (indirect - user) and 3rd-order (indirect - society
wide).

Impact mechanisms characterise the underlying processes through
which DCIs can help reduce energy use and emissions (Horner et al.,
2016; Court et al., 2020; Gawron et al., 2018; Rattle, 2010; Taiebat et al.,
2018). They describe the behaviour-driven application of DCIs,
emphasising the user-function that technical improvements provide.
They link specific DCIs to potential emissions reduction benefits that
result from changes in how energy services are provided or consumed
(Wilson et al., 2019). They are described in the literature as ‘higher
order’ (second order, or indirect) effects that result from the services
that information communications technology provide to users (Pohl
et al., 2019; Wilson et al., 2020).

Understanding the mechanisms through which digitalisation impacts
energy helps guide innovation activity towards functionality linked to
energy savings, and emphasises the need to tackle rebound outcomes for
certain types of DCI.

On the one hand, DCIs help optimise, control, substitute, and coor-
dinate the efficiency with which energy is used for a wide range of ac-
tivities. But on the other hand, by saving time, and reducing the cost,
and friction of these activities, digitalisation can lead to growth in de-
mand – the ‘rebound’ or induced demand effect. This basic trade-off
between efficiency and growth determines the net indirect impact of
digitalisation on energy use and GHG emissions (Lange et al., 2020;
Briglauer et al., 2023).

In this study we build on existing typologies (Horner et al., 2016;
Rattle, 2010; Berkhout et al., 2004) to characterise six impact mecha-
nisms through which DCIs can help reduce energy use and emissions
(see Table 1).

The ‘access’ mechanism enables opportunity for using services with
high utilisation rates of physical technologies or assets. Mobility services
such as car clubs or Mobility-as-a-Service (MaaS), for example, present
alternatives to owning or using single-occupancy private cars. Radical
societal shifts such as a widespread adoption of electrified modes of
transportation or shared mobility services as alternatives to car owner-
ship has high potential for energy use reduction (Perdana et al., 2023;
Sorrell, 2020). Replacement of incumbent technologies or activities with
digital applications takes a shorter lead time than the creation of
completely new systems (Grübler et al., 1999).

Coordinate’ and ‘optimise’ are system orientated mechanisms that
rationalise the use of energy resulting in increased efficiency or reduced
waste (Horner et al., 2016). DCIs using a ‘coordinate’ mechanism,
facilitate the exchange of goods and services e.g., ridesharing, ride

hailing, and peer-to-peer exchange of goods matching real-time demand
with available resources. They are heavily dependent on accessible
digital infrastructure (including networks, platforms, and applications).
The digital platform is a way for highly distributed and granular
(small-scale) distributed surplus supply e.g., a spare seat in a car, a spare
meal from a restaurant, an unused kitchen appliance or book to be
‘matched’ with demand spatially and in close to real-time. ‘Optimise’
defines how a system operates to enhance performance, increase effi-
ciency and curb energy needs (Horner et al., 2016; Pohl et al., 2019).
Fully connected and automated vehicles enhance travel convenience,
dynamically optimise routes, and reduce journey times when linked to
other information communications technologies (Horner et al., 2016;
Gawron et al., 2018; Taiebat et al., 2018). Smart charging/discharging
optimisation (e.g., in shared fleets of AVs) is made possible through
sensors and software that are responsive to real-time electricity network
information (Iacobucci et al., 2021).

Substitute’ is the replacement of conventional goods and services
with digital goods and services e.g., digital hubs for local food displace
large-scale food production and retail distribution with food delivered
directly to consumers from multiple local producers. Digital platforms
match users with providers. ‘Virtualise’ involves the complete/partial
digitalisation of existing goods or services by facilitating physical-to-
physical replacement (e.g., substitution of goods of higher for lower
carbon intensity) or physical-to-digital replacement of goods for services
(e.g., videoconferences deploying virtualisation instead of physical
interaction).

‘Control’ is a user-oriented mechanism that enables greater energy
efficiency e.g., in residential buildings, through smart heating systems,
smart lighting, or home energy management systems (HEMS). These
DCIs ‘control’ or manage how energy is used to provide a service in
residential settings. For example, smart heating can be user-controlled to
provide thermal comfort only in occupied rooms. We use a simple
definition of efficiency that relates to the minimum input of resources to
meet user’s needs - providing sufficiency with less. Expanded definitions
consider interactions between social, economic, and environmental
factors (Li et al., 2022).

The relative influence of different impact mechanisms across DCIs
has not been well established in literature. By framing and measuring
the relative strength of these six mechanisms across a diverse sample of
DCIs we contribute both to themethodological strengthening of research
focussed on indirect impacts and the substantiation of impact mecha-
nisms as underlying causal instruments of change in demand-based
carbon emissions.

Many studies have estimated the impact of DCIs on activity, energy
consumption, or greenhouse gas (GHG) emissions. We refer to these
different metrics as “emissions-related outcomes”. Differences in mea-
sures and outcomes between these studies brings uncertainties in the
assessment of DCIs impact (Horner et al., 2016; Wilson et al., 2020).
Although synthesis studies characterise these uncertainties across
different innovations, they do not explain them. Horner, Shehabi
(Horner et al., 2016) collectively refer to these as ‘known unknowns’. In
this study we are concerned with disentangling these uncertainties by
characterising and measuring the impact of mechanisms not previously
observed. We focus on 22 different DCIs which have all been introduced
into the market within the last 10 years and/or have a least 15% market
share. For these DCIs there is also clear, empirical evidence of potential
emissions-reduction benefit (see Table 2).

1.1. Deployment context

Deployment context describes characteristic differences, not
inherent to the DCI itself but likely to have a confounding influence on
the strength of different impact mechanisms e.g., policy, infrastructure,
markets (Horner et al., 2016). We identify and quantify four of these for
comparison purposes: domain of application, type of action, dependence
on digital accessibility and skills, and dependence on physical

Table 1
Taxonomy of impact mechanisms used in this study.

Mechanism Definition Examples

Access Access a service instead of
owning a good

Ride sharing matches drivers with
riders, verifying trustworthiness

Coordinate Coordinate real-time
demand with available
supply

Mobility-as-a-Service incorporates
up-to-date booking and payment
for services

Optimise Optimise how a system
functions to reduce its
energy needs

Autonomous Vehicles incorporate
smart charging schedules
responsive to electricity network
information

Substitute Substitute with a less
energy-intensive
technology or form of
service provision

Digital hubs connect users with
local sources of food

Virtualisation Virtualise from physical-to-
digital forms of service
provision

Videoconferencing & virtual
interaction replace physical travel.

Control Control or manage how a
user-service is provided,
including for resource
efficiency

Smart lighting (including motion
sensors) adaptively responds to
external conditions and users’
needs
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Table 2
Definitions for Selected DCIs included in this study.

Domain of
Application

DCI Description General digital
infrastructure
requirements

Transport Car clubs (car-
sharing in US)

A membership-
based service
offering short-term
rental of vehicles e.
g., Zipcar

Platform for booking
& locating available
vehicles

Ride-sharing
(carpooling in US,
lift sharing in UK)

Networks
connecting
passengers and
drivers for shared
car journeys or
commutes e.g.,
Liftshare

Platform for
matching drivers
with riders &
verifying
trustworthiness

Shared taxis (shared
ride hailing, taxi-
buses)

Cars or minivans
with multiple
passengers on
similar schedules,
booked at short
notice via apps e.g.,
UberPool

Platform for real-
time scheduling of
passengers via app

Mobility-as-a-
Service (MaaS)

App-based
integrated
scheduling,
booking, and
payment platform
for multimodal
mobility services e.
g., Whim

Platform for multi-
modal integrated
scheduling, booking
& payment

E-bikesa Bicycles with an
electric motor and
battery for pedal
assistance up to
limited speeds e.g.,
Gocycle G3

Control app,
charging schedule,
pricing & payment
schedule

Fully autonomous
vehicles

Vehicles that can
be autonomously
driven without
active human
intervention e.g.,
Waymo

Operating system -
sensors, information
storage &
communications,
control software

Neighbourhood
Electric Vehicles
(NEVs)a

Light-weight, low-
speed, battery-
driven vehicles
allowed on roads e.
g., Waev

Control app -
charging scheduling,
pricing & payment

Bike-sharing Fleets of bicycles
available for short-
term rental from
fixed points
(docked) or free-
floating (dockless),
e.g., Mobike.

Platform - match
users with available
resources &
locations (pricing &
payment)

Telecommuting Remote working
enabled by
information and
communication
technology (ICT) e.
g., Slack.

ICT-enabled home
working,
communications
software

Videoconferencing
and virtual meetings

Virtual interactions
between people in
different physical
locations, enabled
by ICTs e.g., Cisco
TelePresence.

Communications
software, display
monitor,
microphone,
camera, internet

Digital hubs for local
food

Buy food for
delivery directly
from multiple local
producers e.g.,
Open Food
Network

Platform - match
users with providers
(pricing & payment)

Food Meal kits (or meal
boxes)

Home deliveries of
fresh produce pre-
portioned for

App-based ordering,
scheduling systems

Table 2 (continued )

Domain of
Application

DCI Description General digital
infrastructure
requirements

cooking specific
recipes e.g., Hello
Fresh

11th hour apps Food outlets
advertise surplus
fresh food at
reduced prices e.g.,
Too Good to Go

App-based, real-time
sourcing of surplus
food from multiple
providers

Food pairing apps Design food recipes
using surplus
ingredients e.g.,
Plant Jammer

Platform for
matching surplus
home ingredients to
recipes

Food gamification
apps (e.g., for waste
reduction)

Elements of
gameplay used to
support efforts to
reduce food waste
or meat
consumption e.g.,
Quit Meat

Info app& algorithm

Smart heating
systems

Monitoring,
automation,
adaptive learning,
and control (via
app) of heating e.
g., Nest

Internet-
connectivity
supporting adaptive
learning on heating
preferences

Homes Smart lighting Customisation and
control (via app) of
lighting e.g.,
Philips Hue

App-based control,
scheduling of
lighting

Home energy
management
systems (HEMS)

Monitoring,
control, and
management
system for multiple
home functions
including heating,
cooling, lighting,
appliances, and
solar photovoltaics
(PV) e.g.,
GreenWave Reality

Management
system: software,
sensors, info storage
& communications

Heat pumpsa Heating (or
cooling)
technologies that
extract available
heat from the air or
ground to
thermally
condition homes e.
g., Worcester Bosch

Demand responsive
heating or cooling
system

Pre-fabricated whole
home retrofitsa

Custom-fitted high-
performance
building shells
combined with
solar PV and heat
pump units
fabricated off-site
and retrofitted
externally e.g.,
Energiesprong

Digital scanning, 3D
printing and 3D
design modelling in
off-site fabrication

P2P (peer-to-peer)
exchange of goods

Networks of
individuals for
exchanging
products, tools, and
other material
items, e.g.,
SnapGoods

App/network to
match users with
providers

Disaggregated real-
time energy
feedback

Activity- or
appliance-level
electricity or gas
consumption data
available to
households e.g.,
Neurio

Information app and
algorithm
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infrastructure. In Table 3 we further characterise each DCI in terms of
the impact mechanism through which they influence
emissions-related-outcomes, and their corresponding deployment
context.

Domain of application characterises the settings that influence con-
sumption behaviour. It is defined as a classification of provision by site
of practice or use (Butler et al., 2020). DCIs tend to be grouped within
three domains: transport, food, and homes (household energy) (Aall
et al., 2010; Creutzig et al., 2018; Moberg et al., 2019; Ivanova et al.,
2020). In general there is a lack of comparative research into the in-
fluence of different domains on the impact of DCIs, with transport his-
torically prioritised in studies (Perdana et al., 2023; Creutzig et al.,
2015).

Type of action is captured in the Avoid-Shift-Improve (A-S-I)
framework. This is an established framework used by the transportation
research community but increasingly being applied in other research
fields (Creutzig et al., 2015, 2018, 2022b). It describes three distinct
actions associated with the use and ownership of a DCI. ‘Avoid’ relates to
consuming less of a good or service, e.g., telecommuting avoids
work-related travel by working partially or entirely at home or locations
close to home. ‘Shift’ relates to consuming more resource-efficient forms
of good or service, e.g., Maas replaces single occupancy vehicle journeys
with multimodal shared mobility. ‘Improve’ relates to a technological
shift which upgrades the resource efficiency of an existing good or ser-
vice, e.g., smart heating systems improve efficiency for heating, venti-
lation, air conditioning, cooking and electrical appliances.

DCIs variously depend on availability and access to Information
Communications Technology (ICT) infrastructure and services (e.g.,

digital platforms, networks, and connectivity). DCIs offer services via
physical goods and infrastructure, necessitating an additional layer of
dependence. DCIs that incorporate deeper digitalisation mechanisms
have the potential for greater savings in emissions (Thacker et al., 2019).
However, DCIs requiring high levels of digital skills may be less acces-
sible so limiting the impact of their use (Zhang et al., 2021). Many DCIs
also rely on dedicated physical infrastructure in order to provide a useful
service, such as docking stations for bike sharing, and building energy
infrastructure (PV panels, batteries, grid connection) in the case of
Home Energy Management Systems (HEMS) (Gnann et al., 2018; Jones
et al., 2019; Sochor et al., 2016). As digital technology continues to
develop, there are additional requirements for new infrastructure and
reconfiguration of existing infrastructure (Gnann et al., 2018). Van der
Vooren (Van der and Vooren, 2014) emphasises the relevance of this
transition in transport systems. In this study we distinguish two types of
structural dependency (digital and physical).

Digital skills and accessibility enable impact mechanisms to influ-
ence emissions-related outcomes. They relate to user skills and compe-
tencies required to interact with digital infrastructure and supporting
services such as digital platforms, applications, and software (Bygstad
et al., 2019; Hanseth et al., 2010). Individualised services rather than
goods form an increasing share of consumption met through widespread
digitalisation and service automation that require access and capabil-
ities e.g., booking a shared taxi via a smart phone application (Hustad
et al., 2021; Sørensen and Higashikuni, 2013). Digitally-enabled services
may rely on physical infrastructures such as transportation networks.
The extent of this dependence enables or constrains the potential of
different digital impact mechanisms (e.g., access to shared car fleets
depends on availability of dedicated parking spaces). The interplay be-
tween digital capabilities and physical infrastructure has strategic rele-
vance for providers and users (Joglekar et al., 2022). Within these two
types of structural dependency we further define different levels of de-
pendency (see Appendix A Table A1. Structural dependencies influ-
encing the effectiveness of impact mechanisms).

1.2. Controlling influences on emissions-related outcomes

The field of impact estimation is concerned with study design

a E-bikes are included as digital innovations as they can include apps for
charging, scheduling, sharing, pricing & payment. NEVs can be controlled using
a digital signal processor. The NEV market is undergoing a rapid digital trans-
formation, the adoption of digital technologies such as artificial intelligence
(AI), internet of things (IoT), and blockchain are further enhancing operational
efficiency. Heat pumps are included as digital as they can be used in flexible
scheduling mode in response to price signals from electricity networks. Pre-fab
retrofits incorporate digitalisation through scanning, 3D printing, and 3D design
modelling techniques used in off-site fabrication processes.

Table 3
Mapping of DCIs across influences on emissions-related outcomes.

Digital consumer innovation Impact
mechanism

Deployment Context

Domain of
application

Type of
action

Dependence on digital accessibility
and skills

Dependence on physical
infrastructure

Car clubs (car-sharing in US) Access Transport Shift High Low
Ride-sharing (carpooling in US, lift sharing
in UK)

Coordinate Shift Medium Low

Shared taxis (shared ride hailing, taxi-
buses)

Coordinate Shift High Low

Mobility-as-a-Service (MaaS) Access Shift High Medium
E-bikes Substitute Shift Low Low
Fully autonomous vehicles Optimise Improve High High
Neighbourhood Electric Vehicles (NEVs) Substitute Improve Low Medium
Bike-sharing Access Shift High Medium
Telecommuting Virtualise Avoid High Low
Videoconferencing and virtual meetings Virtualise Avoid High Low
Digital hubs for local food Substitute Food Shift High Medium
Meal kits (or meal boxes) Coordinate Shift High Medium
11th hour apps Coordinate Avoid High Low
Food pairing apps Coordinate Avoid Medium Low
Food gamification apps (e.g., for waste
reduction)

Substitute Avoid Medium Low

Smart heating systems Control Homes Improve High High
Smart lighting Control Improve Medium High
Home energy management systems Control Improve High Medium
Heat pumps Control Improve Low High
Pre-fabricated whole home retrofits Substitute Improve Medium High
P2P (peer-to-peer) exchange of goods Coordinate Avoid Medium Low
Disaggregated real-time energy feedback Control Improve Medium Medium
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robustness and standardisation. It is important therefore to contribute to
explanations of underlying causal mechanisms to try and account for
some of the uncertainty (Horner et al., 2016; Borenstein et al., 2009). We
define and account for four key sources of methodological uncertainly.
These are internal validity and robustness; external validity and gen-
eralisability; type of emissions related outcome; and analytical method.
Internal validity and robustness compares strength of study design for
making robust inferences about the magnitude of emissions-related
outcomes. It is a known ‘effect modifier’ and cause of heterogeneity in
outcomes, particularly observable across studies in the homes domain
(Ivanova et al., 2020). Meta-analysis performed on low quality primary
studies also have a tendency to overestimate an intervention (Moher
et al., 1998). External validity and generalisability compares the wider
applicability of the results. This measure considers self-selection bias,
sample size, heterogeneity, and whether field trials or natural experi-
ments have been conducted. Ivanova, Barrett (Ivanova et al., 2020)
consider internal and external validity to be a cause of heterogeneity in
mitigation potential. Sample size is also negatively correlated with effect
size (Composto et al., 2022).

Studies also vary in the type of emissions-related outcome. Changes
in activity levels (behaviour) measure the amount of activity or useful
service/energy service consumed by a DCI, e.g., annual vehicle miles
travelled, kilograms of avoided food. Changes in energy measure the
amount of energy or resources needed to provide a useful service e.g.,
well-to-wheel energy consumption. Changes in carbon measure the
amount of greenhouse gas emissions (CO2 or CO2-equivalent greenhouse
gases) e.g., lifecycle CO2 emissions per passenger-kilometre. Analytical
method relates to key design decisions made by the researcher dis-
tinguishing between for example, empirical approaches (collection of
observed data through field trials or natural experiments) and simula-
tion approaches (a digital parameterised model of a real-world system)
(see Appendix A Table A2. Taxonomy of study design characteristics
influencing the measurement of energy consumption and emissions).

1.3. The aim of this study

The impact of DCIs on emissions is likely to vary based on charac-
teristic differences and subject to wide ranging influences currently not
captured in synthesis studies. The main aim of this study is to disen-
tangle these influences to enable generalisation of the magnitude of
impacts. We do this by focusing on the underlying causal mechanism of
the impact unique to digitalisation. Our findings will help explain un-
certainties previously attributed to study design variation.

2. Materials and methods

2.1. The data

We use data taken from two key publications. Both are synthesis
studies containing multiple estimates of the emissions-related outcomes
of DCIs. These are.

• Potential Climate Benefits of Digital Consumer Innovations (N = 120
estimates) (Wilson et al., 2020)

• Demand, Services and Social Aspects of Mitigation, the contribution of
Working Group III to the Sixth Assessment Report of the Intergov-
ernmental Panel on Climate Change (IPCC) (N = 15 estimates)

Study 1, Wilson, Kerr (Wilson et al., 2020) is a directed review of 215
studies assessing the potential emissions benefit of DCIs across transport,
food and homes. The studies included measure one of three outcomes:
activity levels, energy use, CO2 emissions (or CO2equivalent). At least
six papers for every DCI were included in the study.

Study 2, Creutzig, Devine-Wright (Creutzig et al., 2022a) is a review
of 90 studies assessing the digital service opportunities for transport,
nutrition, shelter, and education and entertainment. Studies measure

the same three outcomes (activity levels, energy use, CO2 emissions (or
CO2equivalent). Findings are incorporated in the Sixth Assessment
Report of the IPCC, and subject to a rigorous two-stage review process.

Across these studies we extract 135 impact estimates for 22 different
DCIs (see Table 4).

2.2. Data preparation

From each study we extract quantitative estimates of the emissions-
related outcomes of DCIs. All estimates measure percent change (%Δ)
from the adoption or use of a DCI compared to a baseline measurement
or reference point of no adoption/use. The outcome estimate relates to
one of three types: (i) change in activity (%Δ activity (n = 24)); (ii)
change in energy (%Δ energy (n= 54)); (iii) change in CO2 emissions (or
CO2equivalent) (%Δ emissions (n = 57)), collectively referred to as
“emissions-related outcomes”.

Where studies include multiple point estimates across a range of
values, we calculate the midpoint as a representation of the mean
(Walter et al., 2007). Around a third of studies contain multiple esti-
mates due to different outcome metrics (energy; emissions), differing
assumptions (e.g., 1 worker household, 2 or more worker household), or
a variant on the innovation type (e.g., ride sharing in a conventional
vehicle or an electric vehicle). For completeness we include multiple
estimates from these studies and treat them as independent. Although
there is some risk of covariance (due to methodological similarity), it is
not possible to treat the data as multi-level, because not all studies
provide multiple estimates (Rabe-Hesketh et al., 2008).

To operationalise study design characteristics, each study included in
the meta-analysis is reviewed by two coders independently and sub-
jectively. Relevant information is extracted according to a pre-prepared
coding framework, and the four study design characteristics coded ac-
cording to these criteria. This is then re-appraised by a second

Table 4
Number of studies and number of estimates of emissions-related outcomes for
each DCI.

Domain of
Application

Digital Consumer Innovation Impact
mechanism

(n) Estimates
(n studies)

Transport Car clubs (car-sharing in US) Access 11 (7)
Ride-sharing (carpooling in
US, lift sharing in UK)

Coordinate 5 (5)

Shared taxis (shared ride
hailing, taxi-buses)

Coordinate 8 (8)

Mobility-as-a-Service (MaaS) Access 1 (1)
E-bikes Substitute 4 (4)
Fully autonomous vehicles Optimise 9 (6)
Neighbourhood Electric
Vehicles (NEVs)

Substitute 2 (2)

Bike-sharing Access 4 (4)
Telecommuting Virtualise 13 (7)
Videoconferencing and
virtual meetings

Virtualise 10 (8)

Food Digital hubs for local food Substitute 5 (3)
Meal kits (or meal boxes) Control 10 (4)
11th hour apps Coordinate 2 (2)
Food pairing apps Coordinate 1 (1)
Food gamification apps (e.g.,
for waste reduction)

Substitute 5 (5)

Homes Smart heating systems Control 5 (3)
Smart lighting Control 5 (3)
Home energy management
systems

Control 17 (11)

Heat pumps Control 5 (3)
Pre-fabricated whole home
retrofits

Substitute 2 (2)

P2P (peer-to-peer) exchange
of goods

Coordinate 1 (1)

Disaggregated real-time
energy feedback

Control 10 (7)

​ Total ​ 135 (96)
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independent coder. For methodological approach we initially identified
seven categories with empirical methods subdivided according to nat-
ural experiment, field trial or demonstration project. These are subse-
quently aggregated due to small sample sizes. (see Appendix A Table A3.
Estimates of (n) of emissions-related-outcomes across impact mecha-
nisms and deployment context).

2.3. Data analysis

Data analysis is based on meta-analysis techniques (Borenstein et al.,
2009). Meta-analysis is an established framework for synthesis ap-
proaches. By combining results of comparable studies we increase the
range of DCIs observed, the statistical power, and generalisability of
findings, compared to individual studies (Higgins et al., 2011). The 96
individual studies we use are representative of North America, Asia,
Australasia, and Africa. They vary in generalisability, from studies based
on a single household (Khajenasiri et al., 2017) to those based on several
million households (Cai et al., 2019). By using meta-analysis techniques
we combine these strengths, to critically evaluate and build on findings,
and importantly address questions that are not posed by individual
studies.

All statistical tests are based on meta-regression methods and include
directional tests of association. Following sensitivity testing we rejected
the use of formal meta-analysis software. This requires methodological
details, not consistently reported in studies, e.g., measures of variability
such as standard deviation and standard error. Using Stata Release 16
(StataCorp, 2019) we apply three tests:

Test 1 – We test separate bivariate associations between magnitude
of impact (emissions-related outcomes) and (1) impact mechanism (2)
deployment context (3) study design. We use descriptive statistics. To
account for ‘spread’ and ‘outliers’ we use both parametric and non-
parametric tests.

Test 2 - As Test 1 but testing directional associations. We use
bivariate regression methods, and post-estimation to predict the
magnitude of impact of each predictor variable. For each model we also
predict explained variance (R2/pseudo R2).

Test 3 – As Test 2 but with the inclusion of controls for study design.
We use multivariate regression methods.

3. Results

We find only non-parametric tests are significant, suggesting syn-
thesised approaches that rely on mean values of the emissions-related
outcome will not provide reliable estimates. Subsequently we base all
three tests on non-parametric meta-regression. Test 1 is a Kruskal-
Wallace test (Field, 2013). This test uses a Chi2 distribution to
compare differences between two or more groups. It is non-specific in
this respect, and any significant result confirms only that there are dif-
ferences between at least two categories of the predictor variable. Test 2
is a bivariate quantile regression (Gould, 1993). This is a non-parametric
linear regression approach which predicts median impact values as a
linear function of the distribution of the predictor variable. The bivariate
quantile regression model takes the following form:

yi = β(p)
0 + β(p)

1 xi + ε(p)i

Where y = outcome (emissions-related outcomes), β0 = constant, βi =
slope on predictor variable xi, (p) = pth quantile regression model
percentile.

Test 3 is a multivariate quantile regression (Gould, 1993). The
multivariate quantile regression model takes the following form:

yi = β(p)
0 + β(p)

1 xi + β(p)
2 zi + ε(p)i

Where y= outcome (emissions-related outcomes), β0= constant, xi, βi=
slope on predictor variable xi, β2= slope on vector of control variables zi,

(p) = pth quantile regression model percentile.
We present results in a series of tables. All tables report % reduction

(− ) or increase (+) in emissions-related outcomes, highlighting signifi-
cant differences.

3.1. Results: impact mechanisms and deployment context

DCIs that mitigate GHG emissions through the substitution mecha-
nism have significantly larger impact (estimated reduction of 34%)
compared to all other mechanisms (access (15.5%), coordinate (22%),
optimise (9%), virtualise (0.6%), and control (20%)) (see Table 5).

Although food-based DCIs have the largest impact (estimated
reduction in emissions-related outcomes of 23.1%), this is not signifi-
cantly different from homes (16.6%) or transport (11%).

DCIs that enable ‘avoid’ actions have a significantly lower impact
(estimated reduction in emissions-related outcomes of 6.1%), compared
to those that enable ‘shift’ (estimated reduction of 20%) and ‘improve’
actions (18%). Our findings contradict studies suggesting ‘improve’
actions have the greatest emissions potential (Maduekwe et al., 2020;
Zhang et al., 2022; Arioli et al., 2020).

We also find significant differences between high, medium, and low
dependencies on digital skills and accessibility. Innovations that require
high levels of digital skills and accessibility e.g., digital hubs for local
food have a significantly lower impact (estimated reduction of 14.5%)
than those with low dependence e.g., e-bikes (estimated reduction of
70%).

We find no significant differences between DCIs that have high
dependence on physical infrastructure e.g., AVs and HEMs (estimated
reduction of 18%), those that have medium dependence e.g., meal kits
(15%), or low dependence e.g., videoconferencing and virtual meetings

Table 5
Results for Test 1 (Chi2 statistic) and Test 2 (bivariate quantile regression),
comparing the magnitude of emissions-related outcomes across impact mecha-
nisms, and deployment context.

Influence on emissions-related outcomes Results for
Test 1

Results for Test
2

Metric =
Chi2

Statistic

Metric = %
reduction (or
increase) in
emissions-
related
outcomes

Impact mechanism Access Chi2(6) =
16.134
Prob >

chi2 =
0.007b

− 15.5
Coordinate − 22.0
Substitute − 34a

Optimise − 9.0
Virtualise − 0.6
Control − 20

Deployment
Context

Domain of
Application

Transport Chi2(2) =
5.369
Prob >

chi2 =

0.068

− 11
Food − 23.1
Homes − 16.6

Type of action Avoid Chi2(2) =
5.628
Prob >

chi2 =
0.060

− 6.1a

Shift − 20.0
Improve − 18

Dependence on
digital skills and
accessibility

High Chi2 (2) =
5.145
Prob >

chi2 =
0.076

− 14.5
Medium − 13.8
Low − 70.0a

Dependence on
physical
infrastructure

High Chi2 (2) =
2.66 Prob
> chi2=

0.875

− 18
Medium − 15.0
Low − 17.0

a Denotes difference is significant to 99% CI.
b Denotes significant to 95% CI.
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(17%).

3.2. Results: study design characteristics as a secondary influence on
emissions-related outcomes

Comparing the results across study design characteristics (see
Table 6), these suggest there are significant differences between studies
based on variations in the strength of internal validity/robustness and
external validity/generalisability. Studies with low internal validity/
robustness estimate higher reductions (20.5%) compared to studies with
high/medium internal validity/robustness (11.4%). Similarly, studies
with low external validity/generalisability estimate higher reductions
(21.9%), compared to studies with high external validity/general-
isability (8.5%). These findings are consistent with Ivanova, Barrett
(Ivanova et al., 2020).

We find no significant differences between type of emissions-related
outcomes. Studies that estimate impact as %Δ activities are more likely
to estimate higher reductions (20%), compared to those that estimate
impact as energy (13.1%) or emissions (16.7%). We find no significant
differences between studies based on different analytical methods.
Modelling studies (accounting models 13.1% simple estimation models
20%, simulation models 20%) do not estimate higher reductions
compared to empirical methods (13.5%).

Our findings in general reflect the difficulty in observing the direct
relationship between emissions-related-outcomes and study design
which is unlikely to be independent of DCI characteristics. Our data
shows for example there is a significant association between type of
emissions-related-outcome and domain of application (Chi2 = 73.63, p
< 0.000) (see Appendix A, Table A4. Association between type of
emissions-related outcomes and domain of application).

3.3. Results: impact mechanisms as a primary influence on emissions-
related outcomes, controlling for secondary influences of study design

In this final section of results, we examine the impact of DCIs on
emissions-related outcomes when we account for the secondary influ-
ence of study design. Results are reported in a comparative table,
comparing Test 2 (bivariate quantile regression) and Test 3 (multivar-
iate quantile regression controlling for study design characteristics) (see
Table 7).

Study design characteristics have a secondary influence on the

magnitude and direction of emissions-related outcomes across different
impact mechanisms, domain of application, and dependence on digital
skills and accessibility. This finding is supported by a general increase in
explained variance (pseudo R2) between Test 2 and Test 3 for all influ-
encing characteristics.

An important finding is that impact mechanisms account for the
highest explained variance in emissions-related-outcomes (5.6%)
compared to deployment context. Explained variance also increases
with the addition of study design controls (8.1%) (see Table 7). This is
still modest but does suggest that impact mechanisms are a higher order
main effect compared to the four variables measured within deployment
context and compared to study design.

Across impact mechanisms evidence remains in support of our
overall findings. We find a significant difference in the magnitude of
emissions-related outcomes for DCIs that provide functionality thorough
‘substitution’ compared to all other impact mechanisms. When we
control for secondary influences, we capture potential rebound effects
(+0.5%)in the measurement of DCIs which ‘optimise’ (see Fig. 1, Graph
1(a) and 1(b)). We see an increase in the magnitude of emissions-related
outcomes of 9.5%.

Our findings show that we can generalise the magnitude of impacts
across applications and contexts by focusing on the underlying causal
mechanism of the impact unique to DCIs. This helps explain uncertainty
which was previously attributed to study design variation for different
applications. Controlling for study design variation further strengthens
the explanatory power of impact mechanisms.

4. Discussion

Key Finding 1 - DCIs that provide functionality through substi-
tution have high emissions reduction potential. Our findings suggest
that DCIs that impact consumption behaviour via ‘substitution’ could
contribute on average a 44.1% reduction in emissions-related outcomes
(compared to a baseline of zero). Whilst DCIs that provide functionality
through ‘optimisation’ have attributes which possess substantial con-
sumer appeal, there remains uncertainty regarding the impact of opti-
misation technologies in the transport domain where efficiencies e.g., in
vehicle automation, potentially create induced demand (Rubin, 2016;
Moeckel, 2017; Wadud et al., 2016). When we control for study design,
DCIs that ‘optimise’ have a slightly negative impact (0.5% increase in
emissions-related outcomes compared to a baseline of zero).

Key Finding 2 – DCIs that avoid high emissions activity have the
lowest mitigation potential. This finding (avoid − 9.7%, shift − 21%,
improve − 14.9%) aligns with Creutzig, Niamir (Creutzig et al., 2022b)
who find ‘avoid’ has the lowest mitigation potential across buildings,
transport, and food end-use sectors. Grubler, Wilson (Grubler et al.,
2018) propose that while ‘improve’ actions have historically been given
prominence, avoidance and modal shift actions advance the feasibility
of a ‘low-carbon supply-side transformation’. The IPCC (2014) pre-
sented the A-S-I framework as a hierarchy of actions in which ‘avoid’ is
the first course of action, followed by ‘shift’ and ‘improve’ (O’Riordan
et al., 2022). Pye, Broad (Pye et al., 2021)suggest that an approach
which focuses on ‘avoid’ and ‘shift’ is well-aligned with policy goals. In
reality, a diversity of strategies is required to achieve ambitious climate
targets (Milovanoff et al., 2021).

Key Finding 3 – Characteristic differences between application
contexts influence the impact of digital consumer innovations.
There is substantial GHG emissions mitigation potential across each of
the domains of transport, food, and homes (energy) (Aall et al., 2010;
Creutzig et al., 2018; Moberg et al., 2019; Ivanova et al., 2020). His-
torically, impact-related studies have tended to focus on a single
domain, with transport often given higher priority (Perdana et al., 2023;
Butler et al., 2020). A smaller number of studies consider impacts across
multiple domains (Erdmann et al., 2010). We find that food-related DCIs
have potentially the largest impact on emissions-related outcomes
(Transport − 9.0%, Food − 37.0%, Homes − 14.3%). In drawing

Table 6
Results for Test 1 (Chi2 statistic) and Test 2 (bivariate quantile regression),
comparing the magnitude of emissions-related outcomes across study design
categories.

Study design
characteristic

Study design
category

Results for Test
1

Results for Test 2

Metric = Chi2

Statistic
Metric = % reduction
(or increase) in
emissions-related
outcomes

Internal validity/
robustness

High/
Medium

Chi2(2) =
3.974 Prob >

chi2 = 0.046a

− 11.4

Low − 20.5a

External validity/
generalisability

High Chi2 (2) =
7.372 Prob >

chi2 = 0.025a

− 8.5a

Medium − 11.4
Low ¡21.9

Emissions-related
outcomes

%Δ activity Chi2 (2) =
8.834 Prob >

chi2 = 0.659

− 20.0
%Δ energy − 13.1
%Δ carbon − 16.7

Analytical method Accounting Chi2 (3) =
1.406 Prob >

chi2 = 0.704

− 13.1
Empirical − 13.5
Simple
Estimation

− 20.0

Simulation − 20.0

**denotes difference is significant to 99% CI.
a Denotes significant to 95% CI.
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conclusions, we note that the selected food domain DCIs within our
study use either the ‘coordination’ mechanism (exchanging with others
to minimise food waste e.g., through digital apps) or ‘substitution’ (local
foods substituted for imported foods via digital hubs) impact mecha-
nisms, which we find have higher emissions reduction potential (Key
Finding 1).

Key Finding 4 - Ensuring good access to digitalisation and
physical infrastructure is an enabler of impact but is not a critical
determinant of the magnitude of impact. Global digitalisation is
steering progress towards increased dependence on digital access and
skills, physical infrastructure and complex interdependence across sec-
tors (Thacker et al., 2019). Our study has not been able to disentangle
these effects. We find very modest differences across high and medium
dependence on digital accessibility and skills, with a large, estimated
reduction in emissions with low dependence. We note however, that
DCIs classified as having lower dependence on digital access and skills
tend to be the same DCIs operating through a ‘substitution’ impact

mechanism which demonstrates a larger emissions-related outcome
(Key Finding 1). As digital technology continues to evolve the re-
quirements for additional enabling physical infrastructure, and future
reconfigurations to existing infrastructure is widely recognised (Gnann
et al., 2018). Van der Vooren (Van der and Vooren, 2014) emphasises
the importance of this transition in transport systems. The diffusion of
radically new vehicle technologies, for example could be impeded by
charging infrastructure deficiencies (Bokolo, 2023).

Key Finding 5: Study design characteristics exert a secondary
influence on the magnitude of impact across different studies. In
this key finding we concur with Horner, Shehabi (Horner et al., 2016).
Differences in impact are highly likely to reflect the subjectivity of de-
cisions made by researchers in the study design process. There are of
course inherent challenges to improving consistency in approaches to
measuring the indirect effects of different impact mechanisms, which
largely rely on the availability and validity of established empirical
work. We suggest future work could be improved by encouraging

Table 7
Results for Test 3 (multivariate quantile regression), comparing the magnitude of emissions-related outcomes across impact mechanisms, and deployment context
controlling for study design characteristics.

Influence on emissions-related outcomes Results for Test 2 Results for Test 3 Absolute (%) change magnitude |test3-test2|

Estimated % change in impact
(emissions-related outcomes)

no controls controls change

Impact mechanism Access − 15.5 − 20.4 4.9
Coordinate − 20.0 − 17.8 2.2
Substitute − 34a − 44.1a 10.1
Optimise − 9.0 0.5 9.5
Virtualise − 0.6 − 6.2 5.6
Control − 21.34 − 20.9 0.5

Explained variance pseudo R2 (%) 5.6 8.1 2.5
Deployment Context Domain of Application Transport − 11.0 − 9.0 2.0

Food − 23.1 − 37.1a 14.0
Homes − 16.7 − 14.3 2.4

Explained variance pseudo R2 (%) 1.2 5.2 4.0
Type of action Avoid − 6.1a − 9.7a 3.6

Shift − 20.0 − 20.8 0.8
Improve − 18.0 − 14.6 3.4

Explained variance pseudo R2 (%) 1.7 4.2 2.5
Dependence on digital skills and accessibility High − 14.5 − 14.0 0.51

Medium − 13.8 − 18.5 4.7
Low − 70.0a − 60.8a 9.2

Explained variance pseudo R2 (%) 0.5 4.1 3.7
Dependence on access to physical infrastructure High − 18.0 − 14.0 4.0

Medium − 15.0 − 18.8 3.8
Low − 17.0 − 15.5 1.5

Explained variance pseudo R2 (%) 0.01 3.1 3.1

* denotes significant to 95% C.I.
a Denotes significant to 99% CI.

Fig. 1. Change in emissions-related outcomes across impact mechanisms, comparing between study estimates without additional controls for differences in study
design (Graph 1(a)) and with additional controls for differences in study design (Graph 1(b)). Graphs depict median impact (bullet) with standard error bars.
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standardised methodological approaches that enhance consistency in
the framing and reporting of methodologies and results. Standardisation
of reporting within studies would enable methodological differences
across study design to be characterised and measured. Related reporting
of uncertainties and errors would enable more advanced meta-analysis
software to be reliably employed in future synthesis work. Bremer,
Kamiya (Bremer et al., 2023) allude to a critical need to develop and
employ robust and consistent methodologies to assess, review and
evaluate the energy and climate effects of digitalisation. In this they
concur with the International Telecommunications Union (International
Telecommunication Union, 2020) whose aim is to improve the consis-
tency, transparency and comprehensiveness of how the use of ICT so-
lutions impacts GHG emissions over time.

4.1. Limitations

We are unable to clearly distinguish between studies that account for
rebound effects (Coroama et al., 2012; Kunkel et al., 2021) within their
estimates of digital impact. This is an important consideration as it has a
potentially large influence (Coroamă et al., 2019; Lange et al., 2023).
For example, in a recent study Meshulam, Font-Vivanco (Meshulam
et al., 2023) estimate that 50–94% of the expected GHG emission re-
ductions from a free peer-to-peer food sharing platform, is offset by
rebound effects. However, across the selected impact studies only a few
account for these effects; most studies do not. Rebound effects due to
digitalisation are therefore not included as a variable in the study design
controls. To understand the relationship between DCIs and energy and
resource use more fully, these effects should be integrated into future
impact studies.

5. Conclusion

There is a pressing need for intensified engagement and participatory
dialogue between industry, companies in the ICT sector, ICT users and
other stakeholders, and research communities. These collaborative
processes could integrate deeper understanding of the use of innovative
digital applications and the potential for climate change mitigation. In
this study we contribute to this debate by disentangling the relative
importance of different drivers of change in emissions-related outcomes
for DCIs. We take a novel approach to test the relative magnitude of
different impact mechanisms. Uniquely, we separate and concurrently
control for uncertainties across impact estimates related to different
study design characteristics. Our analytical framework combined with

quantitative findings offer a more diverse perspective than previous
studies and allows more granular consideration of the disparate influ-
ence of DCIs on energy use and emissions.

Our work can help to deliver well-defined strategies for decision/
policymakers. It can provide clearer focus on which impact mechanisms,
mitigation actions, and application domains, offer the greatest reduction
potential. Policy can shape digitalisation pathways with consequential
influence on energy demand, and GHG emissions (Bergman et al., 2023;
Dzwigol et al., 2024; Niamir et al., 2024). Decision makers can build
integrated approaches between the dematerialisation strategies of the
circular economy and digitalisation to meet the needs of different user
groups (Dzwigol et al., 2024; Bento, 2023; Creutzig et al., 2024). Policy
can direct digitalisation strategies towards meeting wider sustainability
goals, promoting clean energy sources, investment in digital infra-
structure, and the provision of state-of-the-art sustainable systems
(Bento, 2023; Falchetta et al.). To minimise the inherent risks of climate
overshoot, there is also a need for policy development to counter the
potential for rebound/demand induction associated with certain impact
mechanisms.
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Appendix A. Additional Tables

Table A1
Structural dependencies influencing the effectiveness of impact mechanisms

Structural dependency Strength Definition Examples

Digital skills and
accessibility

High Use necessitates skills and access to digital infrastructure e.g., a platform with real-time matching of users and
providers.

Shared taxis

Medium Use requires some skills and access to digital infrastructure, e.g., control apps and scheduling Smart lighting
Low Use is possible without skills and access to digital infrastructure, e.g., an app to allow scheduled charging. E-bikes

Physical Infrastructure High Use requires dedicated physical infrastructure e.g., thermostat and in-home wireless network Smart heating system
Medium Use may require dedicated physical infrastructure e.g., distribution warehouse and delivery vehicles. Digital hubs for local

food
Low Use does not require dedicated physical infrastructure (additional to publicly available) P2P exchange of goods
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Table A2
Taxonomy of study design characteristics influencing the measurement of energy consumption and emissions.

Characteristic Metric Measurement criteria N
(studies)

Internal validity/
robustness

High/Medium Use of randomised control trial or clearly delineated control groups/pre-test baseline, clear system boundaries,
and assumptions, hypothesis testing, testing of alternative explanations includes field trials or demonstration
project, which may use controls/pre-test baseline but lacks some clarity in approach.

72

Low Single model and scenario, or self-reported behaviour/preferences, absence of methodological detail, coarse
assumptions, e.g., 100% household uptake of DCI, or anecdotal evidence

63

External validity/
generalisability

High Large heterogenous sample or synthesis of large-sample field trials, testing performed in different conditions,
long-time frame

25

Medium Real-world conditions, field trial results, but involve small-medium homogenous samples or the potential for
opt-in bias. Large heterogenous sample but account for single condition

35

Low Simulation, small sample size e.g., a single-house simulation or single journey type with no time-of-day
variation, test performed in controlled conditions, potential opt-in bias

75

Emissions-related
outcomes

percent change (%Δ) in
activity *

The amount of activity or useful service consumed, e.g., annual vehicle miles travelled (VMT) 25

percent change (%Δ) in
energy *

The amount of energy or resources needed to provide a useful service, e.g., well-to-wheel energy consumption
(in GJ)

35

percent change (%Δ) in
carbon *

The amount of greenhouse gas emissions (CO2 or CO2-equivalent) e.g., lifecycle CO2 emissions per passenger-
kilometre

75

Analytical method Accounting A linear combination of disaggregated variables in a mathematical model (e.g., lifecycle analysis) 28
Empirical The collection of observed data through field trials, natural experiments, and demonstration projects 33
Simple Estimation Based on empirical or anecdotal evidence with broad assumptions and uncomplicated accounting 20
Simulation A digital parameterised model of a real-world system. 54

*Relative to a without-digitalisation reference case or baseline.

Table A3
Estimates (n) of emissions-related outcomes across impact mechanisms and deployment context

Classification Mechanism Estimates (n)

Impact mechanism Optimise 9
Control 52
Substitute 18
Virtualise 23
Access 16
Coordinate 17

Domain of application Transport 67
Food 23
Homes 45

Type of action Avoid 32
Shift 57
Improve 46

Dependence on digital access and skills High 100
Medium 27
Low 8

Dependence on access to physical infrastructure High 40
Medium 35
Low 60

Table A4
Association between type of emissions-related outcomes and domain of application

Domain %Δ Activity %Δ Carbon %Δ Energy Total

Food n 9 9 5 23
% 39.13% 39.13% 21.74% 100%

Homes n 1 4 40 45
% 2.22% 8.89% 88.89% 100%

Transport n 14 44 9 67
% 20.9 65.67 13.43 100

All Domains N 24 57 54 135
% 17.78 42.22 40 100

There are underlying similarities between the choice of emissions-related outcomes by researchers in specific domains. Eighty nine percent of the
45 studies measuring the impact of DCIs in the homes domain were estimated as %Δ energy. In transport, 66% of the 67 studies were estimated as %Δ
carbon. Studies in the food domain are more balanced across the three different outcome measures.
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Appendix B. Additional Graphs

Fig. B1. Change in emissions-related outcomes across domains of provision, comparing between study estimates without additional controls for differences in study
design (Graph B1(a)) and with additional controls for differences in study design (Graph B1(b)). Graphs depict median impact (bullet) with standard error bars.

DCIs in the food domain have a significantly larger influence on emissions-related outcomes (compared to homes and transport) when we control
for the secondary influences of study design. The impact of food-related DCIs increases from a 23% reduction in emissions-related outcomes (see Graph
B1(a)) to over 37% reduction (see Graph B1(b)). The overall effect is that there are significant differences between food and transport related in-
novations (Graph B1(b) error bars do not overlap).

Fig. B2. Change in emissions-related outcomes across type of action, comparing between study estimates without additional controls for differences in study design
(Graph B2(a)) and with additional controls for differences in study design (Graph B2(b)). Graphs depict median impact (bullet) with standard error bars.

We find no significant change in emissions-related outcomes across A-S-I actions. When we control for differences in study design the magnitude of
studies measuring digital innovations that ‘avoid actions increase by 3.6%. DCIs that ‘improve’ energy and emission efficiency reduce by 3.4%.

We find very modest change in outcomes across high, medium, and low dependence on digital skills and accessibility when we control for study
design, but change remains insignificant. This implies that while ensuring good access to skills is an enabler it is not a critical determinant of the
magnitude of impact. Changes in outcomes across high, medium, and low dependence on physical infrastructure are also not statistically significant.

Data availability

Data will be made available on request.
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