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Domestic automation technologies are increasingly promoted as time- and energy-saving solutions, yet limited
empirical evidence exists on how they are incorporated into everyday routines or how they influence household
energy demand. Existing studies rarely examine real-world use over extended periods, leaving behavioural ad-
aptations and indirect energy impacts underexplored. This paper addresses these gaps through a 15-18 month
longitudinal mixed-methods experimental study of automation with 10 UK households, examining how the
automation of floor cleaning reshapes time use and energy demand. Data were collected through repeated time-
use diaries, smart-plug energy monitoring, app-based usage logs, participant reflections, and follow-up in-
terviews. By integrating time-use analysis with typologies of indirect energy impacts, we quantify how auto-
mation alters when, how, how long and how often tasks are performed, frequently increasing total task duration
and layering energy demand.

During the trial, floor-cleaning frequency increased on average by 32% and total cleaning duration by 189%,
while occupants’ manual cleaning time decreased by 45 %. Energy demand direct from the device declined in
some households but increased in others due to more frequent device operation, reflecting diverse patterns of
substitution, efficiency, and rebound effects. Longer-term follow-up showed use of the device became partially
routine, with most households maintaining higher cleaning duration but reduced frequency relative to the trial
period. The findings demonstrate that the energy outcomes of domestic automation are highly contingent on how
technologies are embedded within household routines. The study highlights the need for context-responsive
design, behavioural-aware energy policy, and further investigation of how digitally mediated routines shape
domestic energy demand.

1. Introduction

Digital automation is increasingly embedded in everyday consumer
technologies, offering promises of time savings, efficiency gains, and
flexibility, benefits long associated with industrial automation [1]. The
classic aim of automation has been to replace human manual control,
planning and problem solving by automatic devices and computers [2].
In the home, automation technologies such as automatic vacuum
cleaners (AVCs), smart thermostats, and smart lighting systems are now
performing tasks once managed and conducted manually by household
members. From a sustainability perspective, such technologies are often
promoted as being energy efficient and claim to support low-carbon
lifestyles through their ability to avoid unnecessary energy use and by

enabling demand-side flexibility through shifting consumption to
cheaper, less constrained periods [3,4]. However, the actual energy
implications depend less on technical potential and more on how these
technologies are adopted and used in real life [5,6].

However, we cannot assume that people will use automation in the
way it was designed. Decades of sociotechnical research show that
technologies are often adopted, adapted, or abandoned in ways that
diverge from their intended function [7-9]. Studies of domestic tech-
nologies illustrate how social norms, household routines, and material
contexts shape their uptake and use. For example, Cowan [10] docu-
ments how the washing machine reshaped expectations of cleanliness,
while more recent work points to similar dynamics with smart appli-
ances such as fridges [11]. Broader sociotechnical analyses likewise
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highlight the role of routines and contexts in shaping adoption [8,12].

A time-use perspective provides a valuable lens for understanding
how domestic automation reshapes household routines and energy de-
mand. As time is a universally constrained resource, this approach
makes it possible to examine how households allocate time across
energy-consuming domestic and non-domestic activities. When applied
to the study of domestic automation, it offers deeper insight into how
digital technologies alter everyday behaviours and, in turn, influence
overall energy demand [13,14]. Importantly, automation can affect not
only the energy used directly to perform a task, but also have wider
indirect consequences. These arise through behavioural and temporal
shifts such as changes in when, how often or how long tasks are per-
formed, or what new activities fill the time saved. As we show in this
paper, such indirect impacts can either reinforce or undermine the en-
ergy savings anticipated from automation, and require a behavioural
lens to be fully understood.

An underexplored distinction in existing research is between auto-
mation of the planning of an activity (e.g., scheduling, timing, coordi-
nation) and automation of the execution (the physical performance of the
task). Many domestic activities consist of subtasks across planning and
execution phases, and technologies often automate only some of these.
For example, AVCs may automate the act of vacuuming but not the
preparatory steps such as tidying up [15]. This partial automation en-
ables users to adapt, work around or ignore certain functions, producing
diverse routines with differing implications for time use, energy de-
mand, and user agency. Positioning planning and execution automation
as analytically separate promises a more precise understanding of where
behavioural change emerges and how energy demand is redistributed.
Our study explicitly operationalises this distinction to examine how each
form of automation reshapes task timing, frequency and duration, and
the resulting direct and indirect energy impacts.

We focus on AVCs as an illustrative case of domestic automation, as
they clearly expose the behavioural and routine-based mechanisms
through which automation affects time use and energy demand. Build-
ing on this case, we extend the literature and evidence in three impor-
tant ways: 1) we collect and analyse longitudinal data through an
experimental trial, capturing change in automation use, time allocation
and energy use; 2) we utilise a wide range of mixed methods to provide
rich insights into the underexplored behavioural and temporal dynamics
of domestic automation; and 3) we focus on automation’s direct, as well
as indirect impacts on energy, offering novel evidence on household
energy demand in an increasingly automated world.

The remainder of this paper is structured as follows. Section 2 re-
views relevant literature on domestic automation and energy and time-
use impacts. We then pinpoint important research gaps to derive our
research questions. Section 3 presents our analytical framework which
captures the relationship between use of automation, changes in time-
use patterns, and the subsequent direct and indirect energy implica-
tions. We outline the mixed-methods approach used to track longitudi-
nal changes and Section 4 presents key findings. Section 5 discusses
these findings considering broader debates on automation and rebound
effects, and Section 6 concludes with practical, policy and further
research implications.

2. Literature review
2.1. Domestic automation and energy

Automation technologies originally focused on industrial and mili-
tary contexts, developed to improve efficiency, productivity, safety, and
control in structured environments [16,17]. From the 1950s onwards,
domestic settings began to see early forms of automation, with appli-
ances such as washing machines and dishwashers introduced to reduce
physical labour and save time [18,19]. More recently, digital (internet-
enabled) automation has rapidly extended further into domestic life,
performing repetitive tasks such as cleaning, cooking, grocery shopping
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and climate control (Table 1). Many of these devices and services pro-
mote themselves not only as convenient and time saving, but also
energy-efficient [20,21]. Several simulation studies substantiate such
energy claims with Wilson et al. [22] and Mahmood et al. [23] providing
an overview of such research. However, unlike industrial settings and
simulation models, the domestic sphere presents a far more complex and
socially embedded setting. Here, household routines and norms play a
significant role in shaping how automation is adopted and used
[7,10,24], raising questions about the energy-related consequences
[5,25,26].

Energy research in the domestic automation field has primarily
focused on energy-intensive activities like climate control, and studied
technologies such as home energy management systems (HEMS),
designed to monitor, control and optimise energy consumption in
buildings. Studies tend to concentrate on energy consumption simula-
tions [27,28] or focus on the early stages of adoption, examining con-
sumers’ adoption intentions e.g., [29,30], technology acceptance e.g.,
[31], and factors influencing uptake e.g., [32,33].

In contrast, few studies track actual users over time to capture do-
mestic processes, routine integration and ongoing engagement e.g.,
[12,34,35]. Automation of routinised and repetitive chores like floor
cleaning has received far less academic attention [36,37], likely due to
the assumption that their energy impact is negligible.

Another line of research has investigated the energy impacts of

Table 1

Categorised overview of routinised, ubiquitous ‘chore’ activities in households
with examples of automation and market available devices or services (adapted

from Bieser and Vrain, forthcoming).

Category Activity Automation Example
Example
Managing home — Floor cleaning Automatic iRobot
hygiene, care, finances vacuum cleaners Roomba
Combo
Clothes Automatic ironing Scanovus
ironing machine
Window Robotic window Ecovac
cleaning cleaners Winbot
Paying bills Automated bill Direct debits
payment systems
Financial Robo-advisors Betterment
investing
Feeding pets Automated food Petlibro
dispenser
Playing with Robotic pet Oro
pets companion
Cutting the Robotic Robomow
lawn lawnmower
Garden Automated Gardena
watering watering system
Retail — non-grocery Shopping in Automated Amazon Dash
general restocking
delivery service
Paying for Just-walk-out Amazon Go
products technology
Retail — grocery Grocery Grocery delivery Ocado pre-
shopping apps filled basket
Meal delivery HelloFresh
services auto prep
Managing home — Locking Smart locks August Lock
lighting, devices, doors/
appliances windows
Switching Smart lighting Philips Hue
lights systems
Managing home — Food Automated Thermomix
cooking, dishwashing, preparation cooking machines
other food related Brewing coffee ~ Automated coffee Nespresso
machines Smart
Managing home — Managing Smart thermostats Nest
heating, cooling, hot indoor climate
water, + own energy Air Automated air Dyson Pure
purification purifiers Cool
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digital technologies. Horner et al. [38] and Bremer et al. [39] summarise
and conceptualise such effects, distinguishing direct and indirect im-
pacts. Direct energy impacts refer to the energy use during the manu-
facture, operation, and disposal of digital devices and associated
infrastructures (e.g., data centres and networks). Such impacts are
relatively easy to measure. For example, measuring device-level metrics
during operation, such as the electricity used to charge a robotic lawn
mower which has been empirically measured at approximately 4.80
kWh per week [40]. However, the ubiquity and high frequency of rou-
tinised domestic activities may have significant cumulative effects when
indirect impacts are considered.

Indirect energy impacts refer to the changes in energy consumption
resulting from altered processes, systems, and behaviours. Such impacts
are often further distinguished into substitution, efficiency, and rebound
effects:

Substitution effects occur when digital products and services
replace traditional options, e.g., the streaming of digital media reduces
the need for physical production and distribution [41]. However, sub-
stitution can also lead to higher energy use (ibid). For instance, watering
plants manually at home requires no electrical equipment, while auto-
mated irrigation systems depend on energy-consuming components like
sensors and control units.

Efficiency (or optimisation) effects occur when ICT use reduces the
use of another resource, such as energy [42]. For example, smart ther-
mostats that adjust heating based on weather and occupancy, or auto-
mated cars that accelerate and brake more efficiently than human
drivers and thereby save fuel [43]. In practice, efficiency and substitu-
tion effects frequently overlap, making it challenging to separate them
clearly.

Rebound effects occur when reductions in energy demand from
(digitally-enabled) efficiency or substitution trigger additional con-
sumption, either of the same goods or service, or of others [44-46]. In
time-use terms, due to the fixed 24 hour time budget on a given day,
changes in time allocation to one activity triggers shifts in the duration,
or the timing and sequence of other activities. If those activities are more
energy intensive than the replaced activities, net energy use increases,
implying a time rebound effect [47]. Drawing from the rebound typol-
ogy in Lange et al. [48], they may manifest through automation as:

o higher task frequency (e.g. cleaning more often because it takes less
time);

e energy of enabled parallel tasks (e.g., TV watching while AVC is
cleaning);

e reallocation of saved time to higher-energy activities (e.g., baking).

Traditional rebound literature focuses on economic mechanisms
such as income and substitution effects [46], but more recent work calls
for attention to motivational, temporal, and psychological dimensions e.
g., [49,50]. Guzzo et al. [50] highlight how efficiency gains can produce
time-use rebounds, where saved time is spent on other energy-
consuming activities. Mizobuchi & Hiroaki [51]’s randomised control
trial found that participants with AVCs reallocated their time to other
activities such as cleaning and cooking, and increased their household
energy consumption.

Overall, indirect effects are driven by complex behavioural processes
and are usually considered more relevant than direct effects from an
energy perspective [52]. Given this, and the behavioural complexity of
domestic settings, we are particularly interested in capturing not only
direct, but also indirect impacts and do so through a time-use
perspective.

2.2. Time-use effects of automation
One of automation’s core value propositions is time saving. How-

ever, many scholars suggest there is a “substitution myth” regarding the
belief that automation merely replaces human effort. Carr [25] and
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others e.g., [53,54] argue that automation often not only transforms the
activity itself but also reshapes entire daily routines and time use in ways
that are difficult to predict. Cowan [10] similarly highlights how his-
torical domestic technologies, like washing machines led not to reduced
housework and the saving of time but to higher expectations for clean-
liness and more frequent laundering. This dynamic is not necessarily
unique to legacy appliances and clothes washing; smart fridges that
recommend and order groceries may reshape shopping frequency and
food waste patterns [55,56], while automated lighting systems may shift
expectations for comfort and ambiance [57]. In their framework on
ICT’s influence on activity planning and execution, Bieser & Hilty [14]
break down an activity into aspects and identify how each is impacted
by ICT, for example activity scheduling is impacted by the relaxation of
time constraints. Despite the growing sophistication of domestic auto-
mation technologies, the literature rarely differentiates between plan-
ning automation and execution automation. However, this distinction is
crucial as each type triggers different behavioural responses and time-
use adaptations, yet empirical studies typically treat ‘automation’ as a
single category.

Additional considerations of time use, relevant to the context of
automation, are raised by Smetschka et al. [58] and Bergener & San-
tarius [59]. Smetschka et al. [58] stresses that time-use consequences
vary by household characteristics such as income, size, and built envi-
ronment. For instance, higher-income households may use freed time
provided by automation for leisure activities involving greater energy
use, while others may use it for unpaid care or work. Bergener & San-
tarius [59] point out how an individual’s pace of life, feelings of being
rushed, and the time constraints caused by other responsibilities such as
work, care or chores can impact upon their time use. These nuances
remain poorly captured in current automation research, along with a
lack of understanding on how time-use patterns evolve over time after
automation is introduced [60]. Initial use experienced during short trials
[61] may differ from routinised use, and the novelty of automation may
wear off over time, leading to behavioural drift or disuse [62,63]. Lon-
gitudinal studies are particularly important for capturing such trends.

2.3. Research gaps and research questions

Overall, existing literature points towards the following four
research gaps: 1) limited empirical research on the energy impacts of
automation in routine domestic tasks; (2) lack of longitudinal studies
tracking users’ behavioural adaptation or disuse over time; (3) insuffi-
cient attention to indirect impacts on energy use through a time-use
perspective; and (4) limited empirical differentiation between plan-
ning automation and execution automation, despite evidence that each
produces distinct behavioural and energy effects. In the study underly-
ing this article, we address these research gaps by developing an inte-
grated framework that links automation to time use and energy impacts.
We use this framework as an analytical lens (see Section 3.1), applying it
to the example automation application of AVCs and tackle the following
research questions:

RQ1: How does the adoption of automation alter time-use patterns in
the home over time?

RQ2: What are the direct and indirect energy implications of
automation?

3. Methodology
3.1. Analytical framework linking automation, time and energy

To guide our analysis, we developed a framework that integrates
Bieser & Hilty’s [14] activity-aspects and time use framework with
Horner et al.’s [38] typology of direct and indirect energy impacts. As
shown in Table 2, our framework maps how aspects of automation
planning and execution phases can generate direct energy impacts, as
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Table 2
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Mapping how automation of the planning and execution phase of an activity can have different direct and indirect impacts via time use on energy demand, drawing
from Bieser and Hilty [14] and Horner et al. [38]. We only consider direct energy use during device operation and not for manufacturing or disposing it. AVC =

automatic vacuum cleaner.

Bieser and Hilty

Horner et al.

Phase Activity Aspect Time-use impacts of domestic automation Potential time-use impacts Direct energy Indirect energy impacts
Example of AVC impacts
Activity 1. Activity selection Delegation of planning to digital systems Delegating cleaning schedule to X (negligible) —
planning requiring energy input companion app
2. Activity scheduling Shifts when activities are performed (e.g., Scheduling cleaning overnight - Efficiency gains
alignment with off-peak times)
3. Planning horizon, Changes in how far ahead tasks are scheduled, Ease of scheduling encourages - Potential efficiency;
duration and how often they are planned and task frequency =~ more frequent cleaning Potential same activity
frequency rebound
Activity 4. Associated activity Alters frequency or type of associated activities  Tidying up before AVC runs Depends on Depends on activity
execution manner activity
5. Activity manner Changes how an activity is performed (e.g. Replacing manual sweeping X Substitution
electrification of tasks) with electric vacuuming
6. Activity duration Tasks completed more quickly; time freed may AVC completes task quickly, X Efficiency gains; Other
be reallocated to other activities user reallocated time to cooking activity rebound
7. Activity Tasks interrupted or partially completed due to ~ AVC stops mid-cycle and n/a n/a
fragmentation system failures or user interventions requires manual restart

8. Parallelisation
activities

Enables simultaneous performance of multiple

Watching TV while AVC is -
cleaning

Other activity rebound

well as indirect impacts mediated by time-use changes. We illustrate the
different time-use impacts of automation through the example of AVCs,
however the framework is applicable to a wide range of domestic
automation technologies (for example those listed in Table 1). The
framework highlights that assuming automation technologies save time
and energy is overly simplistic, as the net energy impact depends on the
combined magnitude of all individual impacts outlined in Table 2.

In principle, from a time-use perspective, automation introduces a
second time budget: that of the machine or additional agent (e.g., a
robot). Although the user is theoretically freed from the task, the robot’s
activity adds to overall time allocated to household processes. This,
along with new associated activities to automation that the user per-
forms (e.g., the set-up, preparation or supervision), also have conse-
quences on overall time use and energy consumption.

Overall, we anticipate that the energy impacts of automation will
depend less on the device’s technical capabilities (direct energy impacts)
and more on behavioural adaptations over time (indirect energy im-
pacts), particularly the time-use dynamics outlined in Table 2. Although
such automation-induced time rebound effects may appear subtle at the
individual level, we argue they can cumulatively contribute to signifi-
cant shifts in daily time-use patterns and overall household energy
consumption when scaled.

3.2. General study set-up

We conducted a longitudinal mixed-methods experimental design
study of automation in UK households, using AVCs as a case study. We
followed households before, during, and one year after the introduction
of AVCs and collected data on their usage patterns and experiences. By
drawing on three phases, we move beyond assumptions of static,
optimal or intended use, as well as short-term novelty effects of trials.
Using data collected in all phases, we examine the behavioural conse-
quences of domestic automation over time and how such changes impact
household energy use.

We focus on AVCs and floor cleaning due to its ubiquity and routine
nature, making it highly relevant for understanding everyday automa-
tion and it’s impacts on time use and energy. Although AVCs require
periodic user intervention and are not fully autonomous, these partial-
automation characteristics are common across many domestic automa-
tion technologies marketed as “smart”. Moreover, a wide range of con-
sumer AVC technologies are commercially available that automate both
the planning (e.g., scheduling when and where) and the execution (e.g.
physical execution) aspects of floor cleaning. The market of AVCs

automating floor cleaning has experienced rapid growth, reaching a
value of $9.37 billion in 2024, and projected to expand further to $11.14
billion in 2025 [64]. The growth has been attributed to changing life-
styles and time constraints along with awareness and technological
improvements [64].

3.3. Participating households

A sample of 10 households was selected from a broader three-year
living lab infrastructure (2022-2025) based in and around Oxford,
UK. As part of the living lab, participants continued living in their own
homes under real-world conditions while trialling and reflecting on
digital technologies. All 47 living lab households were invited to com-
plete a short screening survey, and a total of 35 households responded.
From these, we employed purposive sampling to select 10 households
that provided variation in household composition (e.g., family type and
size), prior levels of digital automation experience across daily life do-
mains, and levels of activity intensity (e.g., cleaning frequency). Only
households with no prior experience using AVCs were eligible to avoid
bias from existing familiarity. The decision to recruit 10 households was
shaped by the longitudinal, mixed-methods design and the availability
of five AVC units, which required staggered deployment and intensive
researcher engagement.

Selected households received detailed information and gave
informed consent in accordance with ethical protocols. As an incentive,
participants trialled an AVC with mopping capabilities for 30 days, with
the opportunity to enter a prize draw to win one, and all got to keep a
smart energy monitoring plug used during the study. This reward-based
approach is commonly used in living lab research e.g., [65] and was
used to support participant retention in a longitudinal design, minimise
attrition, and compensate for the time burden of data collection
activities.

3.4. Data collection

Data collection was conducted between June 2023 and November
2024. To capture behavioural time use and energy-related changes
before and after the introduction of the device, a three-phase, multi-
method data collection protocol was implemented (Fig. 1). As the study
involved only five AVC units for 10 households, data collection was
staggered across households. All fieldwork was conducted by a single
researcher to ensure continuity, build trust and minimise attrition—a
critical factor in longitudinal research. The full set of data collection
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diary tracking app App  Automatic
usage vacuum
tracking app

Fig. 1. Research protocol outlining the data collection timeline. The three phases are numbered, with discrete data collection placed above the timeline and

continuous or weekly data collection placed below.

resources used in this study is provided in Data Availability.

Phase 1 — Pre-trial (30 days): To establish baseline data, each
household was provided with 1) a smart energy monitoring plug (Kasa
KP115) to measure electricity consumption in kWh of their existing VC
and 2) a printed ‘Mission Pack’ which included a cleaning diary for
visible placement (e.g., kitchen wall), which participants used to record
floor-cleaning time-use data (i.e., frequency, timing, duration of in-
stances) and contextual data (i.e., cleaned room(s), cleaning method,
and responsible household member). Table A.1 in the Appendix outlines
the different aspects of floor cleaning captured by the diary. A home-
visit interview lasting between 60-90 minutes was conducted at the
end of the pre-trial to verify diary entries, clarify cleaning routines,
collect smart plug data and document general experience of automation
use across 24 activities spanning 13 domains of daily life to provide
additional contextual household insights.

Phase 2 — Trial (30 days): Following the interview, households
received the AVC and were asked to install its companion app and to
follow the manufacturer’s instructions for setup. The AVC model pro-
vided to all households (Deebot N10) was a mid-range robotic vacuum
with vacuuming and mopping functions, app-based mapping, zoned
cleaning, and optional scheduling. It required manual emptying of the
dust bin. These capabilities allowed for both planning and execution
automation but still required some user input. Participants were given a
brief safety and setup orientation on first use, as required by insurance
protocols, but no guidance was provided on optimal usage, energy im-
plications, or recommended routines. This was intentional to avoid
influencing behaviour and to allow naturalistic integration of the device
into household routines. App tracking was enabled to log time spent
(minutes) using the companion app, and the smart plug was reassigned
to the AVC’s charging base. At the start of the trial, participants
completed a short survey about their time allocation across work, chores
and care, and measures of their pace of life [59].

Each week, participants completed tasks (Appendix, Table A.2) via
instant messaging which tracked their AVC engagement and gathered
rich qualitative reflections on their experiences and behaviours. These
tasks included uploading screenshots of app usage data, filming first use
reactions, providing qualitative reflections on time savings, and
continuing the cleaning diary for any cleaning instances conducted by a
household occupant. If summer travel disrupted continuity of data
collection, the trial period was either extended or adjusted to ensure
analysis represented 30 days.

Post-trial, all participants aged over 12 completed an online survey
of closed and open-ended questions covering time use and behavioural
change. The survey took on average 17 minutes to complete. A final

home visit allowed the researcher to retrieve the AVC, collect smart plug
and app data, and ensure completeness of weekly tasks. A prize draw
randomly selected five households to retain an AVC post-trial.

Phase 3 — Follow-up (15-18 months later): Online interviews with all
10 households’ adult participants captured long-term changes in rou-
tines, ongoing or discontinued device use, and the persistence of time
and energy impacts. Interviews lasted between 20-30 minutes. Four of
the five households that did not win the prize draw, purchased an AVC
(the same model) resulting in nine households owning an AVC.

3.5. Mixed methods data analysis

A diverse range of data types was collected across the phases,
combining objective measures (e.g., app-based logs, energy consump-
tion from smart plugs), with subjective accounts (e.g., diaries, qualita-
tive reflections, photos and surveys) (Fig. 2). Screenshots, written and
audio entries were manually transcribed, and photos/videos were
qualitatively described then organised by question or theme. All
participant-generated materials (diaries, surveys, weekly reflections and
interviews) were complete, with no missing entries. However, quanti-
tative datasets varied in completeness across instruments. The AVC app
logs, while reliably capturing total cleaning time and total cleaning
occasions, provided detailed per-occasion records for only around two
weeks for most households. Analyses therefore drew on the available
detailed logs as these offered the richest behavioural insight. Smart-plug
and diary data were more complete overall but varied slightly in dura-
tion across households (e.g., 27-35 diary days; 28 app-usage days;
27-32 smart-plug days).

To ensure comparability across households, all quantitative datasets
were standardised to 7-days, with values divided by the number of
recorded days to generate per-day rates and subsequently multiplied by
seven. Although AVC units were rotated across households, all trials
occurred within the same summer period, minimising seasonal
variation.

3.5.1. Assessing uptake of automation

To investigate impacts of automation, it was first essential to assess
actual uptake, as ownership or access does not guarantee usage. Using
the framework presented in Table 2, we disaggregated the subtasks
involved in floor-cleaning, mapped the automation potential of AVCs,
and used a wide range of data sources to assess automation uptake by the
households per floor cleaning sub-task (Appendix, Table A.3).
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Fig. 2. Examples of data collected: a) time-use log from the automatic vacuum cleaner (AVC) companion app; b) app usage tracking; c) smart plug app energy log; d)

participant-submitted photos reflecting automation experience.

3.5.2. Assessing changes in time-use patterns

Diary data from Phases 1 and 2 and app based data from Phase 2 (and
Phase 3 where possible) were used to calculate shifts in timing, fre-
quency and duration, and time spent on the new associated activity of
companion app usage. As no diary was completed during the follow-up
Phase 3, time-use changes were assessed from recall-based interviews
covering the previous seven days, a period considered reasonable for
reliable recall by participants [66].

Data across the phases were standardised to seven days to enable
comparison. To deepen the understanding of shifts in time-use patterns,
all qualitative responses were coded in NVivo v14 using a mixed
inductive and deductive approach. Codes were developed around
themes such as perceived time savings, multi-tasking, shifts in routines
and disruptions. Results were used to triangulate patterns captured in
diaries and monitored app behaviours.

3.5.3. Assessing energy impacts

Changes in direct energy use from the activity planning were deemed
negligible as participants did not engage with the companion app in any
substantial way. We focussed on calculating the energy use from the
activity execution of floor cleaning through smart plug data (Phases 1
and 2). Where data was missing from six plugs in Phase 1 and one plug in
Phase 2, additional calculations used manufacturer wattage specifica-
tions and diary-reported durations to estimate energy consumption. For
Phase 3, established data from Phases 1 and 2 on device wattage per
household were used in combination with the recall interview data on
time spent floor cleaning. Comparative energy values were converted to
kWh.

To assess the indirect energy impacts outlined in Table 2 we
compared AVC time-use logs and occupant completed cleaning diaries
from Phase 1 and 2 to identify shifts in when the task was performed
(efficiency) and how often and for how long each method of cleaning
(sweeping, mopping, VC and AVC) was used (substitution). Rebound
effects were similarly captured through diary comparisons, with quali-
tative results to the question 'What activities have you been doing whilst
the [AVC] is cleaning your floor?' coded by activity type to determine

the potential indirect energy consumption of such parallel tasks enabled
by automation.

4. Results
4.1. Automation uptake

4.1.1. Household composition and prior experience

First, we examine participating households’ composition, prior
automation experience, and observed automation uptake across the
planning and execution aspects of floor cleaning during Phase 2 and 3
(Table 3). Although no clear relationship emerged between sustained
uptake and household composition nor prior automation experience, the
household with the highest prior experience (HH3) demonstrated the
most integrated and enduring use of automation (across planning and
execution). They purchased an additional AVC unit for upstairs and by
Phase 3 had also adopted a robotic lawnmower. Such results suggest
prior familiarity with other forms of automation may amplify positive
reinforcement effects. However, other households with low or medium
prior experience also adopted and engaged with the device, indicating
that background familiarity is not a necessary condition for uptake.

Notably, four of the five households who did not win a device in the
prize draw went on to purchase one. For instance, participant 5.1 re-
ported “we bought one even before the prize draw...the same model, same
set-up”. This suggests hands-on experience during the trial was a
stronger determinant of perceived value and subsequent purchase
compared to prior automation familiarity alone.

However, device ownership did not ensure sustained or compre-
hensive use of all automation potential. Patterns of partial automation
were most common (Table 3). Many households used the AVC to auto-
mate execution of cleaning but retained manual control over when,
where and how cleaning was initiated (the planning phase).

Reasons included a preference for spontaneity and a desire for flex-
ibility. For example, participant 10.1 adopted a technique that bypassed
the automation functions “So I prefer to just get her [AVC] and I press the
button and I shut the door and she just does her thing. And then she can't find
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Table 3
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Summary of participating households’ composition and home type, ordered by prior automation experience. Automation uptake is shown for the planning and
execution of floor cleaning during Phase 2 and 3. Ownership of an automated vacuum cleaner (AVC) post-trial is also indicated.

D Automation uptake Automation uptake
Phase 2 Phase 3
Household composition (age) Home type Prior automation Activity Activity Ownership post-trial ~ Activity Activity
(# bedrooms) experience ? planning  execution planning  execution
HH2 Couple (40 s), two children (<12) Semi-detached Low ° D None ° )
5) - = [ -
HH6 Couple (60 s) Detached (3) Low ® 0O Purchased 1 Y )
[ ] [ ] ]
HH9 Single empty nester (50 s) Terrace (3) Low ) Won 1 °
- | - |
HH10 Single (40 s), one child (<12), one Semi-detached Low ° D Purchased 1 ° D
teenager 3) [ —_— - —_—
HH1 Couple (30 s), one toddler Semi-detached Medium ° 0 Won 1 Y °
4 [ ] [ ] ]
HH4 Couple (30 s) Terrace (3) Medium ° Purchased 1 Y
- | - ||
HH5 Couple (40 s), one teenager Terrace (3) Medium D D Purchased 1 D D
HH7 Couple (40 s), two children < 12 Semi-detached High ° D Won 1 ° )
4 [ [ ] ]
HH8 Couple (30 s) Semi-detached High ° Won 1 Y
3) - || - ||
HH3 Couple (50 s), son (20 s) Detached (4) High D D Won 1 + purchased D |:|

1

[ automation used, & occupant maintained control.

@ Household’s adoption of automation across domains: low (none); medium (1-2 domains e.g., entertainment: smart speaker and home management devices: smart

doorbell); high (>2 domains).

her base at the end. But I just pick her up and put her back”. As for dis-
continuance, three households (HH1, 6 and 7) reported the device was
not in use during Phase 3, due to situational disruptions, i.e., home
renovations, moving house, or device malfunction. This highlights the
sensitivity of automation uptake to broader domestic and material
conditions, and the importance of context in sustaining technology use.

4.1.2. Time-use contexts

Time-use contexts such as time spent on paid work, household
chores, care responsibilities and perceived pace of life were anticipated
to shape automation uptake particularly among those responsible for
cleaning. Results are provided in Supplementary Information (SI) Ta-
bles 1 and 2, and SI Fig. 1. Interpretation of the results reveals AVC usage
during the trial is not linearly related to pace of life scores, total time
burden, nor time spent specifically on chores (SI Fig. 1). In our sample,
perceived time pressure, rather than actual time allocation, correlates
more with delegation of cleaning to automation as the two individuals
(participants 8.1 and 3.1) reporting ‘always’ feeling rushed had very
high AVC usage. Overall, uptake and engagement varied widely across
households, with hands-on trial experience emerging as a stronger
determinant of sustained use than prior automation familiarity.

4.2. Impacts of automation on time-use patterns

For the remaining subsections, we map activity aspect(s) from the
analytical framework in Table 2 to the subheadings. Each aspect links to
both time-use and energy dimensions, but we present them where their
implications are most directly observable, while noting overlaps.

4.2.1. Changes in when the activity is performed (aspect 2)

The introduction of automation had limited impact on shifting the
scheduling of when cleaning occurred across households. In most cases,
the timing of activity remained consistent with prior patterns, whether
structured or ad hoc. Households with existing evening or daily cleaning
patterns continued these rhythms into Phase 2, simply incorporating the
AVC into established slots—typically later in the evening or layered with
weekend routines. For households with more flexible or irregular pre-
trial patterns, the use of automation similarly followed an ad hoc
form, suggesting that automation did not significantly reconfigure
temporal structures. Only three households demonstrated a noticeable
shift: HH4 and HH5 moved away from evening cleaning, with HH5
being the only household to use the automation planning functionality,
scheduling two cleans per day during Phase 2. This resulted in a nar-
rowing of cleaning time window, which HH10 also experienced. Data is
provided in SI Table 3.

4.2.2. Changes in frequency and duration of activity during trial (aspects 3
and 6)

The introduction of AVCs in Phase 2 increased cleaning frequency by
an average of 32 % from a baseline of six occasions per week and
increased total floor cleaning duration by 189 % from a baseline of 52
minutes per week (SI Fig. 2). However, occupant time spent cleaning
dropped by 45 % (equivalent to an average reduction of 24 minutes per
week). In eight of the ten households, the AVC undertook the majority of
cleaning, often accounting for over 90 % of cleaning time (SI Table 4 e.
8., HH3: 92 %; HH5: 99 %).

Fig. 3a shows results for floor cleaning completed by occupants and
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Fig. 3. Waterfall graphs indicating sequential change in time and number of occasions spent floor cleaning for 10 households across the three study phases. Arrows
indicate direction of change (increase/decrease): a) floor cleaning by occupants, b) total floor cleaning which includes the automatic vacuum cleaner (AVC) in Phases
2 and 3. Phase 1 represents the pre-trial baseline, Phase 2 reflects change relative to the baseline during the 30 day trial, and Phase 3 reflects subsequent change to the
trial at the long-term follow-up. HH 3,5 and 7's results off the chart are indicated by text.

3b the overall floor cleaning, which includes the AVC usage in Phases 2
and 3. Among households with high baseline cleaning habits, overall
frequency did not alter much in Phase 2, but the number of occasions for
occupants carrying out the cleaning decreased, along with time spent on
the activity. For instance, HH1 cleaned 10 times and spent 63 mins/
week in Phase 1, shifting to 11 times per week — with seven of those
instance carried out by household members themselves and for only 9
mins/week during Phase 2, consisting of quick 1-2 minute sweep ups
after dinner time with a toddler. For one household (HH4) recorded
floor-cleaning time increased from 3 mins/week to 58 mins/week. This
pattern suggests that the AVC facilitated more frequent upkeep whilst
keeping occupant involvement low (<1min/week). Fig. 3 presents the
changes in time spent (duration) and number of occasions (frequency)
on floor cleaning in each household, over the three phases.

Although quantitative data indicated clear time savings for the par-
ticipants (illustrated in Fig. 3a where occupant time spent per week in
column 2, is less than column 1), their perceptions of time were more
complex. In most cases, perceived time savings broadly matched
recorded reductions in manual effort (SI Table 4). However, many
participants described invisible burdens associated with preparation,
supervision or device maintenance (not captured in Fig. 3) which added
to perceived time spent on the activity of floor cleaning. As participant
1.1 noted “I feel like I spend the same amount of time because I have to tidy
up more now before it [AVC] runs”. Such reflections discussed further in
Section 4.2.4 illustrate the reconfiguration rather than removal of labour
with manual effort distributed to more frequent occasions rather than
fully eliminated.

4.2.3. Long-term changes in frequency and duration of activity (aspects 3
and 6)

During Phase 3, over one year after the trial, change from pre-trial
cleaning patterns was less stark. Relative to Phase 1 baselines, long-
term cleaning frequency decreased by 4 % and duration increased by
44 % (SI Fig. 2). However, occupant time spent cleaning had still
dropped on average by 31 %.

Examining household level data, patterns diverge more compared to
during the trial (Phase 2). Some households sustained high levels of
automation (e.g. HH5: 98 % AVC usage; HH4: 75 %, SI Table 4) whilst
others either reduced or entirely discontinued use. In cases of dis-
continued use, occupant cleaning time either reverted to pre-trial levels
or declined even further than pre-trial levels (Fig. 3a). HH7, for example,
recorded no net gain in time saved, nor perceived any gain by Phase 3,
“We feel the floors are being cleaned the same as before. The trial didn’t
change anything” [participant 7.1]. Caution should be taken when
interpreting results from Phase 3 as data collected for only the previous
7 days is likely to have missed households’ ‘big cleans’ that appear to
happen at least every month but not every week.

4.2.4. Changes to planning and associated activities (aspects 1 and 4)
For many households, planning and preparation time increased
during the trial due to more frequent floor cleaning. Participant 7.1
reflected post-trial “more time planning, moving and tidying but less on
cleaning. Time has just shifted to different tasks”. Over time, however,
several households streamlined routines to reduce preparation effort.
For example, participant 3.1, reported a “knock-on effect” where “we
don’t leave things on the floor... no more floordrobe” and by Phase 3 the
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household had modified furniture layouts to accommodate the device,
such as attaching bedside tables to walls to remove obstacles from the
floor.

Other new activities also emerged due to automation. Most notably,
households took on supervisory roles and occasional troubleshooting.
Participant 4.1 described in Phase 2 “Last week I spent two plus hours
supervising [the AVC] getting stuck and being available to untangle rugs out
of the rollers.” Together, these examples illustrate how automation
generated new forms of domestic labour rather than eliminating existing
ones.

Additionally, the AVCs brought about companion app usage, which
varied but was generally low. Seven households used the app for under
an hour across the 30 day trial, typically just for activation or checking
routes. Others recorded 3 to 4.5 hours of usage largely during the
‘burdensome’ set up phase. By Phase 3, two of the households using an
AVC completely discontinued app use and reverted to pressing a manual
button on the device. The rest used it for approximately one minute each
time they wanted to: "just set it off" [participants 4.1, 9.11; "see where it is
in a room and whether I can open the door" [participant 9.1]; or "check what
an error is" [participant 5.1].

4.2.5. Enabled parallelisation (aspect 8)

Responses to the question regarding parallel tasks are summarised
per household in Table 4. Most participants reported using the time
when the AVC was active to do domestic chores. As participant 3.1
explained “once I cleaned all the skirting boards, another time I dusted all the
spider corners... I use the [AVC] to double my cleaning effort. As the floors
look cleaner it makes the stairs and other areas look more dirty, I have to keep
up.” However, some participants also reported spending the time on
additional leisure and relaxation such as watching TV, reading or having
a cup of tea.

Overall, across households, these patterns show that automation
primarily reconfigured domestic routines and time-use patterns through
intensification, fragmentation, and greater parallelisation, rather than
simply reducing labour. Next, we focus on what these shifts mean for
energy consumption.

Table 4
Automation enabled parallelisation reported by households.

ID Parallel tasks during Phase Parallel tasks during
2 Phase 3
High HH3 Not relaxed, working, Working from home, in
automation cleaning surfaces, the evening on computer
bathroom and windows (but not whilst watching
TV)

HH5 Working, making breakfast Anything: sleeping, out
of home, working,
watching TV

Partial HH4 Work outside home, Meeting, cooking
automation cooking, watching TV,
working at home,
supervising [AVC]
HHS8 First times supervising, Sleeping, out of home
then cooking, reading, out shopping
of home

HH9 Cooking, cleaning surfaces Cleaning upstairs,

and vacuuming stairs, working, hanging out
chores, laundry, washing, watching TV
supervising [AVC]

HH10  Laundry, put out the bins, Making lunch and

cleaning surfaces, cooking dinner
Discontinued HH1 Child care bedtime routine, n/a
use and washing up

HH2 Other chores, laundry, n/a

cooking, surface cleaning,
reading, playing with
children

HH6 Having a cup of tea, n/a

gardening, working

HH7 Cleaning surfaces, working n/a
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4.3. Impacts of automation on energy use

4.3.1. Direct and indirect energy impacts of activity (aspect 5)

Fig. 4 presents the weekly energy use (kWh) from floor cleaning
across the three study phases, distinguishing occupant operated vac-
uuming (blue) from AVC use (orange).

Pre-trial (Phase 1) vacuuming consumed an average of 0.38 kWh per
week, compared to 0.27 kWh for automatic cleaning and 0.10 kWh for
additional occupant cleaning during Phase 2. However, closer inspec-
tion of household-level trends in Fig. 4 reveal aggregate figures mask
important variation depending on usage patterns and contexts.

For households 3, 5, 8, 9, 10, 1, 2 and 6, majority of energy use has
shifted from conventional vacuums to AVCs in Phase 2, suggesting a
strong substitution effect. For households 3, 5, 4, 8 and 9, total cleaning
energy use even increased in Phase 2, indicating a clear rebound effect. As
outlined in Sections 4.2.2 and 4.2.3, AVCs were operated more
frequently in Phase 2, compared to pre-trial occupant cleaning. These
higher frequencies across all but one household (HH5) explain the
observed rebound effects.

Only in HH7, occupant cleaning remained dominant in terms of
energy (and time) use despite automation, suggesting partial or incon-
sistent AVC usage. Efficiency effects are difficult to observe in the avail-
able data. On average, the AVCs had a lower power draw than their
manual counterparts. However, a wide variation was found with the
watts of the AVCs (despite being the same model across households — SI
Table 5). This is presumably due to changes in settings e.g. suction
power.

A year later, in Phase 3, average weekly energy use decreased to 0.13
kWh for AVCs and increased to 0.30 kWh for VCs used by occupants.
However, results from HH7 skew the average result with much higher
energy consumption from their VC (Fig. 4). All but one household (HH2)
reported perceiving their floors were being cleaned more than or the
same as before the trial. In some households (e.g., HH8 and 9), data
suggest that energy use declined as the novelty effect wore off, as
participant 9.1 implied “I made much more of an effort because obviously
you wanted to in the trial, one wanted to find out how good it was... but now
I've sort of relaxed and I'll only stick it on when needed.” This pattern in-
dicates a joint substitution and efficiency effect driven by replacement of
manual vacuuming and the lower wattage of AVCs. Although HH3 and 4
lowered energy consumption in Phase 3 relative to Phase 2, their energy
use remained higher than in Phase 1, indicating a sustained rebound
effect. Meanwhile, HH1, 2, and 6 discontinued AVC usage, and their
energy use for VC cleaning dropped compared to Phase 1, but HH7’s
reversion to fully cleaning themselves with the use of VCs resulted in
greater energy consumption than Phase 1.

Next, we look solely at the method of cleaning used and how much
households shifted from manual sweeping and mopping to electricity
consuming vacuuming. The results show a significant shift. The pro-
portion of time using electrical methods rose sharply for the vast ma-
jority of households in Phase 2 and remained high in Phase 3 (Fig. 5a),
while the proportion of cleaning occasions involving electrical appli-
ances showed more variability (Fig. 5b). Household level data available
in SI Table 6. This suggests that although AVCs were used for longer
durations, manual methods continued to be intermittently employed,
with qualitative insights revealing such occasions were mainly quickly
sweeping a targeted zone e.g., kitchen after cooking. Overall, these in-
sights confirm the joint occurrence of substitution and efficiency effects
in many households.

4.3.2. Indirect energy impacts of other activities (aspect 6)

Another indirect energy impact not captured by smart plugs and
diaries is the energy consumed by other activities conducted in the saved
time. Conclusive statements about time reallocation and the energy
implications are not possible, because AVC adoption can lead to broader
shifts in the timing and sequencing of activities that can only be captured
with full-day or —week time-use diaries. However, our results in Section
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Fig. 4. Stacked clustered bar chart showing the energy use in kWh/week from floor cleaning across the three study phases for both 1) Automatic vacuum cleaner
(AVC) (orange) and 2) occupant cleaning with their regular vacuum (blue).
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4.2.5 provide some insights on what participants were doing while the caregiving, reading, relaxing, or sleeping. Also, there was little evidence
AVCs were running. The results suggest that most participants carried that parallel activities led to increased (energy-intensive) travelling, as
out low-energy activities such as other cleaning or maintenance tasks, participants were typically present or at work while the AVCs were

10



E. Vrain et al

operating. Taken together, these results demonstrate how automation
produces overlapping substitution, efficiency, and rebound effects,
shaped by household routines and usage patterns.

5. Discussion

Our study contributes evidence that the real-world impacts of do-
mestic automation are shaped not only by technical performance, but by
how such technologies are embedded in and interact with everyday
routines. Using a time-use lens and longitudinal design, we traced direct
and indirect energy effects stemming from changes in when, how, how
often, and how long tasks are performed, including the parallelisation of
activities. These patterns of temporal redistribution help explain why
some households experienced efficiency gains or substitution effects,
while others saw minimal change or additive rebound effects.

Our findings demonstrate the value of integrating Horner et al. [38]’s
typology of indirect energy impacts with Bieser & Hilty [14]’s activity-
aspect and time-use framing. This integrated framework allows for a
more nuanced analysis of both home automation’s downstream conse-
quences and all automation with impacts on time and energy, extending
beyond device-level assessments to capture dynamic behavioural in-
teractions and cumulative impacts.

5.1. Automation and time-use patterns

To address RQ1 (how the adoption of automation alters household
time-use patterns over time), our findings show that automation did not
simply displace manual effort but catalysed broader behavioural adap-
tations, most notably increased activity frequency, added planning
effort, and greater parallelisation of tasks. Rather than saving time,
automation frequently redistributed domestic labour by layering new
preparatory and supervisory activities onto existing routines. In partic-
ular, deliberately distinguishing between planning and execution auto-
mation yielded valuable insights. For instance, many households
initially experienced increased planning efforts after adoption, reducing
time savings; however, these effects diminished over time as learning
and adaptation took place.

These shifts were partly contingent on household-specific factors
such as pace-of-life rhythms, spatial arrangements, and material con-
figurations, revealing how automation becomes embedded in situated
practices. Taken together, such patterns contest dominant narratives of
domestic automation as time-saving and instead demonstrate how it
reorganises, intensifies, or reconfigures domestic labour. This
mechanism-based interpretation reinforces and extends classic socio-
technical insights into the co-evolution of technology and household
routines, echoing recent scholarship that emphasises how automation-
induced change is conditioned by domestic materiality and everyday
rhythms [7,10,26,67-70].

5.2. Direct and indirect energy impacts

In relation to RQ2 (the direct and indirect energy implications of
automation), our findings demonstrate that automation’s energy out-
comes depend less on technical efficiency and more on behavioural and
temporal dynamics. Across households, planning automation (e.g.,
scheduling) intensified device use and contributed to additive energy
demand, while execution automation enabled ‘layering’, increasing
overall domestic activity. These behavioural pathways help explain the
coexistence of substitution, efficiency, and rebound effects observed in
the study.

Our differentiation into planning and execution automation also
revealed that many households rarely engaged with scheduling func-
tions. This explains that execution automation alone did not substan-
tially reconfigure the timing of cleaning. Pre-existing habits, household
rhythms, and social factors such as work schedules or family dynamics
play a greater role in determining when cleaning occurred, raising
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questions about the extent to which automation can support load
shifting or demand flexibility. These patterns illustrate how indirect
impacts, including rebound effects, manifest not only in total energy
used, but in when and how that energy is consumed. As AVCs draw
energy primarily during charging rather than during task execution, our
direct energy findings apply specifically to devices with similar
charging-based profiles; however, the indirect, behaviourally mediated
mechanisms we identify are not dependent on this characteristic. This
multifaceted understanding aligns with Horner et al.'s taxonomy of in-
direct impacts, particularly behavioural, systemic, and structural di-
mensions and reinforces the need for integrated assessments that
capture subtle but cumulatively significant shifts in household energy
demand, patterns that conventional device-level efficiency metrics often
miss [71].

5.3. Generalising beyond vacuums: A broader automation lens

While our study focused on AVCs, Table 1 illustrates a wider land-
scape of domestic automation, ranging from automated watering sys-
tems to smart locks and automated cooking devices. Many of these
technologies share key characteristics: they decouple task execution
from occupant presence, enable scheduling, and often operate with
limited feedback on cumulative use. As shown in our framework
(Table 2), such features carry significant implications for energy demand
depending on how they are embedded in routines, when they operate,
and what activities they displace or enable. Our findings therefore
reflect underlying behavioural mechanisms rather than device-specific
properties, supporting the analytical relevance of AVCs as a case
through which to examine wider automation dynamics. Although these
mechanisms emerged in the context of floor-cleaning automation, other
forms of domestic automation may introduce additional behavioural
considerations not captured in our study. In particular, user education
and perceived safety may shape how confidently people rely on planning
features, such as scheduling, in systems that require configuration or are
viewed as risky to leave unsupervised. Together, these mechanisms
suggest that small domestic devices can serve as early indicators of
broader transformations in digitally mediated household energy prac-
tices. Their impacts, whether substitutional or additive, mirror patterns
emerging in other domains of domestic life.

The growing presence of digitally enabled automation agents such as
several listed in Table 1 (e.g., automated window cleaners, robotic lawn
mowers, automated pet feeders) expands the time budgets available for
substituting human tasks [72] and reshapes existing activity patterns. In
some cases, these systems even introduce entirely new behaviours. The
overall energy impact will depend on the cumulative use of these devices
and the nature of the human activity reconfigurations they induce. If
time freed through automation is not redirected towards low-energy
activities, net household energy demand may rise due to the addi-
tional consumption of the devices themselves [49,60].

As automation diffuses across tasks and contexts, its aggregate
impact on energy systems will depend not only on how much energy is
used, but also on when that energy is demanded, and whether this
timing aligns with system-level constraints or opportunities, such as
dynamic time-of-use tariffs and the need for greater demand flexibility.

6. Conclusion
6.1. Implications for practice, policy and future research

Our empirical findings relate specifically to floor-cleaning automa-
tion, but they reveal behavioural mechanisms such as routine restruc-
turing, increased task layering, and rebound effects that are likely
relevant across other forms of domestic automation. Building on these
demonstrated patterns, we suggest that context-responsive design and
energy policy should account for how automation can increase task
frequency, extend total task duration, and introduce new preparatory or
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supervisory demands, rather than focusing solely on device-level effi-
ciency. These broader implications are offered as informed reflections
rather than definitive generalisations.

6.1.1. Practical implications: design and consumer use

Automation technologies such as AVCs and those listed in Table 1,
must be designed with greater attention to context-responsive use. De-
vices equipped with adaptive learning capabilities, for example for AVCs
being able to recognise dirt levels, adjust to user routines, and tailor
operation to actual need, could reduce redundant use and mitigate
rebound effects. Importantly, such responsiveness should be coupled
with transparent interfaces that make cumulative energy and time use
visible to users. Providing real-time feedback on energy consumption
and scheduling patterns could help users make more informed decisions
about when and how frequently automation is deployed and help them
manage their energy bills [73,74].

6.1.2. Policy implications: supporting sustainable automation

Existing policy frameworks such as the EU Eco-design Directive
(2009/125/EC) and Energy Labelling Regulation (2017/1369) typically
assess appliances based on their rated technical efficiency under
standardised conditions. However, as our findings show, the real-world
energy impacts of automation depend heavily on how technologies are
embedded into household routines. Therefore, policy instruments must
evolve to account for these indirect and behavioural dimensions. For
instance, eco-labelling schemes and appliance energy ratings could be
extended to include dynamic usage factors. This might involve a new
category or ‘behavioural risk rating’ that flags devices prone to excessive
or redundant use due to automation features such as remote scheduling
or absence of feedback loops. These expanded labels could inform
consumer purchasing decisions by highlighting not just how much en-
ergy a product uses under lab test conditions, but how its design and use-
patterns may influence household-level rebound effects.

Policy tools such as public procurement guidelines and rebate
schemes could also prioritise automation products that support demand-
side flexibility. For example, incentives could be offered for smart de-
vices that are responsive to grid carbon intensity signals, or that include
user-facing dashboards making energy/time trade-offs transparent
[75,76]. These measures would help shift market expectations away
from automation as purely a convenience or luxury good, and toward its
responsible integration within sustainable domestic practices. Finally,
public awareness campaigns could challenge prevailing norms around
convenience, hygiene, and automation, especially where these drive
unnecessary or excessive use. By reframing domestic automation as a
tool for sustainable time and energy management, not just labour
saving, policy can help shape more climate-aligned consumption
narratives.

6.1.3. Further research implications

Despite the proliferation of domestic automation technologies,
research on their time use and energy implications remains narrow in
scope, typically centred on short-term trials in developed countries
contexts. Future studies on automation would benefit from using a
similar longitudinal, mixed-methods approach to the one presented in
this paper, but also including methods of 24hr time-use diaries to cap-
ture not only immediate changes in time use but also the reallocation of
time. It is particularly important to examine whether automation dis-
places, complements, or amplifies existing labour, and how such out-
comes are mediated by household characteristics, built environment,
and evolving expectations of convenience and cleanliness.

6.2. Concluding remarks
As domestic automation continues to diffuse across ever greater

household activities and in more and more households, its impacts on
time use, household labour, and energy demand require closer scrutiny.
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This study uses the automation of vacuum cleaners as a demonstrative
example and shows they can reduce manual effort and lower average
energy consumption. However, these gains are contingent on how
technologies are embedded within everyday routines. Automation does
not operate in a vacuum (pun intended): it alters the timing, frequency,
and social meaning of tasks. To ensure that domestic automation con-
tributes to, rather than detracts from, goals of energy demand reduction
and demand flexibility for decarbonisation, future interventions must
account for behavioural dynamics, promote flexible and responsive
design, and consider the diversity of domestic contexts. Addressing these
challenges will be essential as households increasingly become sites of
automated, digitally-mediated consumption. Only then can domestic
automation become a force for low-carbon transitions rather than a
source of rebound and emissions creep.
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