

The indirect energy impacts of digitalisation in daily life

Scenario exploration using the FeliX model

Poornima Kumar

ECE, S3

Mentor: Sibel Eker

Co-mentor: Quanliang Ye

Why study digitalisation's indirect energy effects?

Diffuse, usage-dependent long-term climate outcomes.

Photograph and graphics: Marcel Seger, Poornima Kumar

Our lives are increasingly digitised and automated.

What are the indirect energy and climate impacts of digitalisation?

Under 'desirable' and 'undesirable' scenarios

Steps:

- 1. Endogenise, sector-split energy demand
- 2. Introduce digitalisation indicators into FeliX
- 3. Scenarios best and worst

Source: https://iiasa.ac.at/models-tools-data/felix

Conceptual model: Efficiency improvements via digitalisation can lead to direct and indirect rebound.

The idea is to explore digitalisation dynamics through FeliX, IIASA's inhouse system dynamics model

Using smart heating as a test case, I'm building a module to explore:

How do interactions between technological and social learning dynamics shape digital adoption?

How do these interactions impact rebound mechanisms?

What are the indirect effects on **energy** demand?

Let's talk about:

Bridging the qualitative-quantitative divide

Bringing more empirical research into quantitative system dynamics modelling Exploring the interactions between feedbacks at different system levels and their impacts on digitalisation

Questions?

Poornima Kumar

DPhil (PhD) candidate

Environmental Change Institute

University of Oxford, UK

www.idoddle.org | Poornima.kumar@eci.ox.ac.uk