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Today’s talk is structured in eight main sections
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1 | Motivation (1/2)

(0),43(0)23D)

Increased uptake of EVs requires extensive build-out of charging infrastrt

Problem context: Decarbonising transport

Million Further notes
30 60%
26.6 + 88% of GHG emissions are covered by net-
25 224 50% zero legislation as of 2023 2],
» Mitigation efforts in transport sector feature
20 17.5 40% strong focus on road vehicle electrification.
15 141 30% * 65% of commitments in nations’ revised
’ nationally determined contributions (NDCs)
10.5 . as of the Glasgow Climate Pact (2021) are
10 65 20% focused on electrification & fuel-switching ..
o * Helping deliver these commitments requires
10%
5 3.2 o . . .
17 20 22 widespread charging infrastructure at
0 2 - BB l 0% workplaces and public places to bring
2016 2021 2026 2016 2021 2026 ‘convenience parity’ between EVs and

internal combustion vehicles (ICVs) “..
EChina mEurope mUS mJapan ECanada WS. Korea M Southeast Asia WAustralia mindia mRest of World BGlobal

Fig. 1 | Global near-term EV sales (l.) and share of new passenger vehicle sales by market. Note:
Europe includes the EU, the UK and EFTA countries. EV includes BEVs and PHEVs. Figure taken from ],
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1 | Motivation (2 /2)
Number of workplace chargers is projected to grow fivefold (UK) / doul
by 2030

Future drivers & outlook to 2030

UNIVERSITY OF

OXNFORD

¥ 08 =

S O [l —
8 million EVs 82 GWh Workplace chargers Scope 3 emissions
Annual sales volume by +300% electricity demand +500% forecasted for UK/ Firms’ reporting obligation of
2030 [+400% (2024)] °! for EV charging by 2030 °! +200% in DE by 2030 7] employee commute [©!

Decision support system

Identified need for data-driven decision support to plan and
operate EV workplace charging infrastructure !
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2 | Background
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Roll-out of extensive EV charging infrastructure on employee car park

Case study: Context-relevant information

RQ]_ What are the benefits of coordinated EV workplace charging for firms?

sis Busites? anter" = Motivation: regulatory context

-~ et > . Hor, Sp, £
[ Regularload ## Additional load Additional load A Ry
“ Uncontrolled charging (UCC) Smart charging (SC) S ‘

» Enforcement of recent EU laws add
regulatory pressure for firms

. ;
y . BMW,Oxford
A yec » . .“ " >
---------- ) VoSC ‘ - '

max. site

capacity » Corporate Sustainabi |Ity

Reporting Directive (CSRD):
more stringent reporting of
Scope 3 emissions, including
employees’ commute practices
to the workplace

* Energy performance of
buildings (EPBD): legal
requirement to provide min. 1x

Electricity consumption
[kWh]

ol Timsi[] owtavolf charging station on business
A P Change in electricity consumption during plant/site operation car parkS W/ >20 pa rking SpOtS

(‘GEIG’ in Germany — in effect
since 01.01.2025)

A ucc Additional load incurred from uncontrolled EV charging (UCC)
A sc  Additional load incurred from smart EV charging (SC)

Fig. 1 | Schematic electricity consumption profile of industrial site. Fig. 2 | Aerial image of employee car park.
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3 | Model Structure (1/2) @‘
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We benchmark each model type against uncontrolled charging (UCC) [°o

Approach: Outlining four-step structure

1 | Working shift patterns i [ %A | Max. peak [KWh] ]
[ %A | Charging costs [GBP] ]
[ %A | Carbonemissions [kgCO,] ]

(@ daily | [ & | monthly |

[ SC —> | Smart charging (SC) ]

| J
[ 2 % | Allocation of cars to shift ]
[3 == | EV battery capacities ] ]
[ )

[ SC — | Smart charging (SC)

4 [ | State of charge (SoC) levels

" Carbon emission minimisation (CEM)

e | Generation of EV availability matrix|

0
3
Qo
(=]

o

©
o

=
o
£

L

[(se_=> 1 Smartcharging (5C) ] ——
Time-series data .

~
(5 A | Electricity consumption curve ) benchmarked against S
[6 & | Time-of-use (ToU) electricity tariff ] Uncontrolled charging (UCC) o | E | daily l

[7 [ | Grid carbon intensity profile ] E | monthly

-

Fig. 4 | Schematic overview of our modelling framework. Step 1: Specification of input parameters. Step 2: Selection of model, assessing (i) peak
minimisation & valley filling (PM-VF), (ii) charging cost minimisation (CCM), or carbon emission minimisation (CEM). Step 3: Scenario analysis with varying
EV adoption rates [%] and temporal scale. Step 4: Computation of model results for each objective function in relative terms (%A).
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3 | Model Structure (2/2)
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Parametric assumptions and time-series data are used as model inputs

Step 1: Input

Electricity demand curve P;

1 | Working shift patterns

w

2 % | Allocation of cars to shift

(%)

3 @ | EV battery capacities
4 [ | State of charge (SoC)levels
>
W\ ’ |t | Generation of EV availability matrix|
U

[ 5 A | Electricity consumption curve

0.9

(6 & | Time-of-use(ToU)electricitytariff |

Electricity consumption profile (normalised to mean of February 2023)

1
1
0.8 E ———————— 68—60—: ?6_66 ———————— >! [ 7 | | Grid carbon intensity profile ]
_____ . - AMsshift _ | ____________PMshift ______ _
07 : 06:15—-16:15 16:15—02:00 Real-world data + assumptions
! - _ho production _ _
02:00 = 0615 AM  PM OFFICE  #CARS
06 2| 63% 27% 10% 1,100
@-@ Q\sa“ Qf,-,e“ 6,;? d,-s?‘ Qg,-@ @59 Q@“ Qq,su“ @-9“ Q@ & @@ \,599 \,,—@ \(,;9 ,@@ Q—.@ ,35.@ ﬁ-@ ,9&9 q}‘@ @6’ q?-ss“ q?s" .
Time 3| 48 71 100 uniformly
KWh KWh KWh distributed
Fig. 5 | Electricity consumption profile of industrial production site in Feb 2023. Note: Time-series data has 4| E, 168% BL(’)B%
been normalised to mean of Feb 2023 for data sensitivity reasons. Shaded area represents 95%-confidence interval. E, 80% 100%
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4 | Methodology (1/2)
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Methods: Drawing from operations research (OR)

Peak min. & valley filling (PM-VF): Charging cost min. (CCM): Carbon emission min. (CEM):
min Zpy-yr = Z (P +y: — €)? min Zecy = Z Ve * e min Zcgm = Z Ve *Vt | 56 — | Smart charging (SC) l

teT teT teT Charging cost minimisation (CCM)

[ SC — | Smart charging (SC)

0 St Y= ) Tmefme veer Total charging load

meM | SC —» | Smart charging (SC) J
[2] =T S S S 1D VteT, meM Charging power restrictions ~
benchmarked against
[3] 0 <Em*+ Z Xmtfmt S Em~ VEET, meM Battery capacity restrictions Jneontioled chargng (BE0)
keT k<t
C Average of peak and minimum power
f R consumption of building
n — lnl . - . Er 4 Energy needed for next trip
[4] Em™ = Em + Z Xmtfme Z Er4a VEET, meM Minimum state-of-charge (SoC) requirement B Battery capacity of EV m
En Final battery energy of EV m
keT I kst Emt Initial battery energy of EV m
. . . . F EV presence matrix
[5] 0= xme(1 = fine) VtET, meM Logical operator ensuring car availability Mo seotBVs
Py Power consumption of building in interval {
Qum Set of intervals prior to interval i
Tm Charg_ing,'di§charging period of EV m
max(P, ) + mm(P n-:m,( Elii[ixu\slllc:(f:)nr ischarging power
C = (P, 2 Constant C ff,{' xriual nmleEv%n e
2 rder Departure time of EV m
Xini Charging/discharging power of EV m in interval i
Vi Total load for charging/discharging the available
1,if EV m € M is parked at workplace attimet € T, . ey . . . EVs in interval i
fme = {0 / P P otherise Definition of car availability matrix i Time interval

For further references, see 19 11,
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4 | Methodology (2/2)
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Each model pursues a different optimisation goal, yet w/ identical constraint

Methods: Drawing from operations research (OR)

Peak min. & valley filling (PM-VF): Model selection
min ZpM—-VF — Z (Pt + Ve — C)z [ SC — | Smart charging (SC) ]

teT Charging cost minimisation (CCM)

[ SC — | Smart charging (SC)

500 - T T T T T T T T T T T -
T~ ——— Initial building power consumption Carbon emission minimisation (CEM) I
450 - U Final building power consumption | | | SC — | Smart charging (SC) |
I | .
| | b l : ;I, J : 1 s 4
NG QN Y XA\ benchmarked against
350 J'/ N— ? T ?T f Uncontrolled charging (UCC)
L .
g 300F / Ly ! T ' max(P;) + min(Py)
R [ i Lo o [— —————————————————— - i L < - ( =
5 250 - | 1) - 2
g ,‘/: | * :
% 200} /! : !
- / | \| Mathematical Objective Function
/ I . . L] . L]
/ i\ Minimising the least square difference:
100 "’ “e——
___________ -): :(- -
50 | No cars - § 2
available min Zpy_yr = (Pt + Vi — C)
0 - 1 L 1 d ’ e 1 4 A A 4 1 -
0 2 4 6 8 10 12 14 16 18 20 22 24 teT

Fig. 6 | Schematic power curve. Figure taken from [1%],
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5| Results(1/5)

PM-VF reduces peaks by -21.3% measured against UCC [%A] | EV rate =

UNIVERSITY OF
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Analysis: Scenario analysis for varying EV adoption rates

Peak minimisation & valley filling (PM-VF) | EV adoption rate = 50%

S4 | 80%

=
IS

Empirical focus

S5 | 100%

=
[\S]

Max. Peak -21.3%

=
o

Charging Costs

o
o

—— Electricity demand curve industrial site
—— Uncontrolled charging (UCC)
—— Smart charging (SC)

Electricity consumption [kWh] (normalised)

o
o

Carbon Emissions

LI LS, LS LIRS
O e U S D A S D S S S, S S SO OO O

P I PFEFE NP RO RNY DB WO LD R P ) P -25% -20% 5% -10% 5% 0%
Value of smart charging (VoSC) [%A]

Fig. 7 | Resulting electricity demand profile from EV charging. Note: Graph Fig. 8 | Relative performance of PM-VF. Note: Bar
shows results for model type PM-VF for EV rate = 50%, exemplarily for 01 Feb, 2023. charts capture change in output cf. to UCC (VoSC) [%A].
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5| Results(2/5)

CCM reduces costs by -19.6% measured against UCC [%A] | EV rate = 50%

Analysis: Scenario analysis for varying EV adoption rates

UNIVERSITY OF

(0),43(0)23D)

©

Charging cost minimisation (CCM) | EV adoption rate = 50%

§ DR Electricity costs - 35

® 1 s Iy

£ i T L

S 8 AR =
£ RV EELES
< i <
< H oL ="
= 8
c 7\ ‘f _o5 8
3 =
7 2
B - e peeoneoonon e | faseeerpomepeoe e posee R e e aeserd e e s passseonesg oconet] {f oo -'6'
Q -200
>.0.8- — — L
£ Electricity demand curve industrial site

= Uncontrolled charging (UCC)

i 06 Smart charging (EC) -15

w vo-

@@@@@@@@@@&@@ﬁ§§@@@@@@@@@

P TP HFR R PR SR WN RO WS D Pf) Ppra

Fig. 9 | Resulting electricity demand profile from EV charging. Note: Graph
shows results for model type CCM for EV rate = 50%, exemplarily for 01 Feb, 2023.

Scenario analysis

EV adoption rate [%]

81 | 15%

i

§2 | 30%

i

3 | 50%
84 | 80%

Empirical focus

S5 | 100%

Max. Peak

A -19.6%_

Carbon Emissions

0.5%

-20% -15% -10% -5% 0%
Value of smart charging (VoSC) [%A]

Fig. 10 | Relative performance of CCM. Note: Bar
charts capture change in output cf. to UCC (VoSC) [%A].
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5| Results(3/5)

CEM reduces CO, by -19.3% measured against UCC [%A] | EV rate = 50%
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©

Analysis: Scenario analysis for varying EV adoption rates

Charging emission minimisation (CEM) | EV adoption rate = 50%
EV adoption rate [%]
————— Grid carbon intensity ~ 120 4
P v antuy i | (s2 | c0%
I
; A/~ ‘~

\ W\ \ -100
\N V i \ [\
4 ]
e &—_ A _90

Max. Peak 4.1%|

1 - TD
—— Electricity demand curve industrial site--

—— Uncontrolled charging (UCC)
—— Smart charging (SC)

Charging Costs

Grid carbon intensity [gCO2/kWh]

1
D
o

Electricity consumption [kWh] (normalised)

o
(o2}
1

Carbon Emissions -19.3%

SH DS S HFHAKSHSEL L LSS LSS SN

PP TP HFP P PR OGN KD P P ) P 20% 15% 10% 5% 0%
Value of smart charging (VoSC) [%A]

Fig. 11 | Resulting electricity demand profile from EV charging. Note: Graph Fig. 12 | Relative performance of CEM. Note: Bar
shows results for model type CEM for EV rate = 50%, exemplarily for 01 Feb, 2023. charts capture change in output cf. to UCC (VoSC) [%A].
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5| Results(4/5)

Results reveal trade-off space betw. max. peak, charging costs & CO, emiSsio
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Analysis: Scenario analysis for varying EV adoption rates (summary)

Peak minimisation & valley filling (PM-VF): Charging cost minimisation (CCM): Carbon emission minimisation (CEM):
< 5% —e— Max. Peak b —e— Max. Peak '
10% “ N —+— Charging Costs °/ 0% —«— Charging Costs ./
TR :___———:/ . —=— Carbon Emissions '/ —e— Carbon Emissions /
0% ./ -
— 5% _—

—

VoSC [%A]
(01.02.2023)
S >
™ =~
VoSC [%A]
(01.02.2023)
> &
= 5
VoSC [%A]
(01.02.2023)
>
>

9
5%
- -20% - o > -10%
10%
c ol
25% —— Max. Peak \ s T 5%
—s— Charging Costs '\ .
—e— Carbon Emissions | —_— . .
0% -20%

60% 80% 100% 20% 40% 60% 80% 100% 20% 40%
EV adoption rate [%)] EV adoption rate [%]

20% 40% 80% 100%

60%
EV adoption rate [%)]

Fig. 13 | Visual summary of key metrics max. peak, charging costs and carbon emissions differentiated by model type | EV rates [S1-5: 15-100%].
Note: Quantitative assessment of output changes (VoSC) [%A], measured against UCC, for PM-VF (l.), CCM (m.), and CEM (r.), exemplarily for Feb. 2023.
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5| Results(5/5) .
Deployed models yield robust outcomes to time-variant parameters

Analysis: Temporal sensitivity analysis (28 single-day model runs for Feb 2023)

Peak minimisation & valley filling (PM-VF): Charging cost minimisation (CCM): Carbon emission minimisation (CEM):
30%
) . 50y M Max. Peak ° ° BN Max. Peak o b3 o
o — )
20% o o o o [ Charging Costs 8 20% [ Charging Costs o -
o ®© I Carbon Emissions e I Carbon Emissions T
o o
10% 8 10%
10%
T 0% ° =) )
o & o o 0%
o
(8 -10% (g (8
= o = =
-20% -10% 10%
8
30%  mmm Max. Peak T 20% 8 b
., Charging Costs N 20% -
“40%  mmm Carbon Emissions g
15% 30% 50% 80% 100% 0% 80% 100% 15% 30% 50% 80% 100%
EV adoption rate [%]

EV adoption rate [%] EV adopt|on rate [%]

Fig. 14 | Overview of model results, grouped by model type, for increasing EV rates [S1-5: 15-100%], computed over a 4-week long time frame [Feb
2023]. Note: Statistical analysis of 28 single-day model results, capturing output changes (VoSC, [%A]), measured against UCC, for each model type (a) PM-
VF, (b) CCM and (c) CEM by plotting the variability of the key output metrics (i) max. peak (blue), (ii) charging costs (orange) and (iii) carbon emissions (green)

using boxplots as visualisation tool. Note: Lower %A numbers (y-axis) refer to higher saving potentials
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6 | Discussion

Review: Main findings, limitations & further research
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Summary of main findings Model limitations

= Model implementation

* Model assumes perfect foresight of
EV availability and parameter inputs,
which can be justified given a
workplace setting

= Optimal solution space
» Optimising for respective model
objective (PM-VF, CCM, CEM) yields
lowest overall objective value across
model types

= Technical limitations

* Model does not incorporate physical
charging power constraint, for SoC >
80% to reflect change from constant
current to constant voltage.

» Trade-offs between key metrics:

* Inturn, trade-offs between objectives
for achieving key metrics (max. peak,
charging costs, carbon emissions)
are indispensable

= Behavioural travel assumptions

Further model parametrisation to
reflect travel patterns of commuters

= Robustness of results:

« Temporal sensitivity analysis reveals .
robustness of results

M

Further research

» |ntegration of Vehicle-to-Building

* Model expansion to include
bidirectional charging capabilities by
including negative range of decision
variable x,,; to allow for discharging

= Access to charging infrastructure

* Advancing model to cover sensitivity
analysis of employees’ access to
charging infrastructure and the
implication on firms’ power demand

= Computation of cost-benefit analysis

* Integrating net-present value (NPV)
analysis to facilitate decision making

E-Mobility Power System Integration Symposium — Charging Infrastructure Planning Il — Seger et al. (2025) — October 06", 2025
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6 | Discussion
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Full paper is available in npj sustainability mobility and transport

Publication reference

npj | sustainable mobility and transport Article

3

https://doi.org/10.1038/s44333-025-00032-w

Firm level optimisation strategies for
sustainable and cost effective electric
vehicle workplace charging

% Check for updates

Marcel Seger' [, Christian Brand'?, Christoph Clement’, James Dixon* & Charlie Wilson'*

Expanding electric vehicle (EV) charging infrastructure is essential for transitioning to an electrified
mobility system. With rising EV adoption rates, firms face increasing regulatory pressure to build up
workplace charging facilities for their employees. However, the impact of EV charging loads on
businesses’ specific electricity consumption profiles remains largely unknown. Our study addresses
this challenge by presenting a mathematical optimisation model, available via an open-source web
application, that empowers business executives to manage energy consumption effectively, enabling
them to assess peak loads, charging costs and carbon emissions specific to their power profiles and
employee needs. Using real-world data from a global car manufacturer in South East England, UK, we
demonstrate that smart charging strategies can reduce peak loads by 28% and decrease charging
costs and emissions by 9% compared to convenience charging. Our methodology is widely applicable
across industries and geographies, offering data-driven insights for planning EV workplace charging

Full publication available here:
infrastructure. https.:.//www.nature.com/articles/s44333-025-00032-w

Fig. 15 | Screenshot of published study in npj sustainable mobility and transport
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7 | Web Application
Open source web app allows firms to compute bespoke scenario analyse
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Demonstration of open-source web application for firm-specific decision support

— EV Workplace Charging Dashboard P rog ramm | ng Iang uag es & tOOIS

Peak Minimisation & Valley Filling (PM-VF)

Data pipeline ﬁ pgthOﬂ

Model formulation ‘V‘PYDMD
‘ GUROBI

OPTIMIZATION

Optimisation

Visualisation Wy Streamlit

Fig. 16 | Screenshot of interactive web application built in Streamlit 2],

E-Mobility Power System Integration Symposium — Charging Infrastructure Planning Il — Seger et al. (2025) — October 06", 2025 18


https://ev-workplace-charging.streamlit.app/
https://ev-workplace-charging.streamlit.app/
https://ev-workplace-charging.streamlit.app/

7 | Web Application b\
Add-on: Evaluation of web application using Design Science Research SKFORD

(Paper 2)

Semi-structured interviews w/ business executives

Summary Selected quotes: perceived usefulness

« We build a digital artefact using Streamlit to assists workplace decision 'l actually find this really useful, Because | think a lot

makers to more accurately predict the impact of EV workplace charging of companies still have no real idea of the challenges
* We developed, demonstrated, and evaluated the prototype through three that come with electrification in general, and with
rigour design & evaluation cycles, collecting qual. + quant. data from reducing CO, emissions. And just getting an overview

eight case study partners (medium- to large-sized firms in Germany)
« With a total SUS score of 82%, we deemed the prototype as acceptable.
» Going forward, we will open-source the web application to the public.

of what’s basically out there and how things can be
Z optimised is, | think, a huge help for any company.”

Case study ID: 4a [Pharma]

Contribution to theory "But it's just nice to be able to argue using valid data,
and I think data will become increasingly relevant

» Decision type: ‘Decision support system in the future anyway. And of course, all this information

+ Guiding workplace decision makers with building and operating EV is something I'd otherwise have to gather myself with a
workplace charging infrastructure lot of effort. Having it all from a single source—just
« Core contribution through ‘exaptation’, i.e. repurposing existing entering my own values, which I already have—that's

t solution.”
optimisation algorithms for dedicated applications in workplace charging a great solution

decision contexts

Case study ID: 2a [Office supply manufacturer]
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...and a special ‘thank you’to:

Q & A my collaborators Dr Christoph Clement and
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potential further collaboration

Please reach out to discuss l

Thank you for your attention!
Any Questions?

Environmental Change Institute

University of Oxford
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8 | Appendix(1/13)

Electricity cost curve based on Octopus Agile Tariff for February, 2023
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Model Structure | Step 1: Time-series inputdata(1/2)

36 Input
Parametric assumptions

34 . -
K | Working shift patterns )
(2 % | Allocation of cars to shift )
32
[ 3 | EV battery capacities ]
"y
2 [ 4 O3 | Stateof charge (SoC)levels ]
< 30
Q
== .
2
§ | taen | Generationof EV availabilitymatrix|
>
[*]
k>
- % [5 A | Electricity consumption curve ]
| & & | Time-of-use(ToU)electricity tariff ||
24 [7 [l | Grid carbon intensity profile ]
2
o S S S o o ® o S S o o o o N o o o o o o N S S S
< § < § N S S N < § <§ < 8 S S S N <§ <§ < < <
$ $ N\ & Ny N N3 & NJ N N N LU NS ) S N @ N ® <« P P P
Time

Fig. A1 | Time-series data of electricity costs in Feb 2023. Note: Graph depicts evolution of half-hourly electricity
prices [p/kWh], taken from Octopus Agile Tariff (Nov 2022 v1) 3], Shaded area represents 95%-confidence interval.
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8 | Appendix (2 /13)
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Grid carbon intensity profile in South-East England for February, 2023

Model Structure | Step 1: Time-series inputdata (2/2)
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Fig. A2 | Time-series data of grid carbon intensity in Feb 2023. Note: Graph depicts evolution of half-hourly grid
carbon intensity [gCO,/kWh], taken from nationalgridESO ['“. Shaded area represents 95%- confidence interval.
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PM-VF reduces peaks by -7.4% measured against UCC [%A] | EV rate = 1go
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Analysis: Scenario analysis for varying EV adoption rates
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Fig. A3 | Resulting electricity demand profile from EV charging. Note: Graph Fig. A4 | Relative performance of PM-VF. Note: Bar
shows results for model type PM-VF for EV rate = 15%, exemplarily for 01 Feb, 2023. charts capture change in output cf. to UCC (VoSC) [%A].
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PM-VF reduces peaks by -21.3% measured against UCC [%A] | EV rate =
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Analysis: Scenario analysis for varying EV adoption rates
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Fig. A5 | Resulting electricity demand profile from EV charging. Note: Graph Fig. A6 | Relative performance of PM-VF. Note: Bar
shows results for model type PM-VF for EV rate = 50%, exemplarily for 01 Feb, 2023. charts capture change in output cf. to UCC (VoSC) [%A].
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PM-VF reduces peaks by -28.5% measured against UCC [%A] | EV rate =

Analysis: Scenario analysis for varying EV adoption rates

UNIVERSITY OF

(0),43(0)23D)

Peak minimisation & valley filling (PM-VF) | EV adoption rate = 100%
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Fig. A7 | Resulting electricity demand profile from EV charging. Note: Graph
shows results for model type PM-VF for EV rate = 100%, exemplarily for 01 Feb, 2023.
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Fig. A8 | Relative performance of PM-VF. Note: Bar
charts capture change in output cf. to UCC (VoSC) [%A].
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CCM reduces costs by -18.5% measured against UCC [%A] | EV rate = 15%

Analysis: Scenario analysis for varying EV adoption rates
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Fig. A9 | Resulting electricity demand profile from EV charging. Note: Graph
shows results for model type CCM for EV rate = 15%, exemplarily for 01 Feb, 2023.
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Fig. A10 | Relative performance of PM-VF. Note: Bar
charts capture change in output cf. to UCC (VoSC) [%A].
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CCM reduces costs by -19.6% measured against UCC [%A] | EV rate = 50%
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Analysis: Scenario analysis for varying EV adoption rates
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Fig. A11 | Resulting electricity demand profile from EV charging. Note: Graph Fig. A12 | Relative performance of PM-VF. Note: Bar
shows results for model type CCM for EV rate = 50%, exemplarily for 01 Feb, 2023. charts capture change in output cf. to UCC (VoSC) [%A].
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CCM reduces costs by -19.5% measured against UCC [%A] | EV rate = 100%
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Analysis: Scenario analysis for varying EV adoption rates
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Fig. A13 | Resulting electricity demand profile from EV charging. Note: Graph Fig. A14 | Relative performance of PM-VF. Note: Bar
shows results for model type CCM for EV rate = 100%, exemplarily for 01 Feb, 2023. charts capture change in output cf. to UCC (VoSC) [%A].
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CEM reduces CO, by -17.4% measured against UCC [%A] | EV rate = 150@ GG

o

Analysis: Scenario analysis for varying EV adoption rates
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Fig. A15 | Resulting electricity demand profile from EV charging. Note: Graph Fig. A16 | Relative performance of PM-VF. Note: Bar
shows results for model type CEM for EV rate = 15%, exemplarily for 01 Feb, 2023.

charts capture change in output cf. to UCC (VoSC) [%A].
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CEM reduces CO, by -19.3% measured against UCC [%A] | EV rate = 50%

Analysis: Scenario analysis for varying EV adoption rates
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Fig. A17 | Resulting electricity demand profile from EV charging. Note: Graph
shows results for model type CEM for EV rate = 50%, exemplarily for 01 Feb, 2023.
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Fig. A18 | Relative performance of PM-VF. Note: Bar
charts capture change in output cf. to UCC (VoSC) [%A].
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CEM reduces CO, by -19.0% measured against UCC [%A] | EV rate = 100%

Analysis: Scenario analysis for varying EV adoption rates
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Charging emission minimisation (CEM) | EV adoption rate = 100%
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Fig. A19 | Resulting electricity demand profile from EV charging. Note: Graph
shows results for model type CEM for EV rate = 100%, exemplarily for 01 Feb, 2023.
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Fig. A20 | Relative performance of PM-VF. Note: Bar
charts capture change in output cf. to UCC (VoSC) [%A].
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