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Abstract

The rapid adoption of electric vehicles (EVs) intensifies the need for workplace charging in-

frastructure, which can shift demand from peak evening hours to daytime and better align

with renewable generation. Yet many firms underestimate the long-term implications of

workplace charging for electricity demand, costs, and carbon emissions. To address this

foresight gap, we developed an open-source decision support system (DSS) that uses firm-

specific data and data-driven modelling to simulate the medium- to long-term impacts (5-15

years) of different workplace charging strategies. Our DSS enables executives to evaluate

trade-offs between peak load management, cost minimisation, and emissions reduction when

planning and operating EV charging infrastructure. Following the Design Science Research

approach, we developed, demonstrated, and evaluated our DSS with rich real-world data

from eight German companies. Additional interviews showed that executives particularly

value the tool for making trade-offs explicit and for fostering cross-departmental dialogue.

Usability evaluation with the System Usability Scale resulted in a score of 81.8, confirming
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high usability. Our research advances the DSS literature by extending prevailing DSS design

for sustainability transitions through the integration of firm-specific data, explicit trade-off

representation, and collaborative decision support. In doing so, it strengthens the user-

oriented perspective within the sustainable mobility transition discourse, which has so far

been dominated by system-level analyses. Responding to several scholarly calls, our study

contributes to green information systems, data-driven operations research, and energy mod-

elling by demonstrating an applicable, user-oriented DSS. Ultimately, our artefact supports

organisational transitions towards low-carbon mobility by revealing decision tensions that

are otherwise obscured.
Keywords: Green Information Systems, Design Science Research, Sustainable Mobility,

Charging Infrastructure, Open-Source Web Application, Decision Support.

1. Introduction1

By 2030, the International Energy Agency projects annual sales of eight million passenger2

electric vehicles (EVs) in Europe. This is almost four times the 2024 level. It will increase3

electricity demand for EV charging more than threefold, reaching 82 GWh [1]. Public charg-4

ing stations, including those at workplaces, will therefore play an increasingly important5

role. This is particularly relevant for people without access to home charging, who are more6

likely to come from less affluent backgrounds [2, 3].7

For firms, the stakes are considerable: Recent analyses suggest that investing in workplace8

charging infrastructure and electrifying company fleets with renewable-powered EVs can yield9

annual savings, per firm, of up to¤100k and cut emissions by 250 tCO2 [4]. With the number10

of workplace charge points expected to increase fivefold in the UK and more than double in11

Germany by 2030 [5, 6], the need for evidence-based and firm-specific decision support to12

guide these investments is becoming increasingly urgent. In response, business executives13

now face the task of strategically planning the build-out of EV charging infrastructure.14

This is partly driven by stricter environmental regulations, such as the obligation to report15

commuting practices as part of Scope 3 emissions [7]. In Germany, firms are further required16
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by the ‘Gebäude-Elektromobilitätsinfrastruktur-Gesetz (GEIG)’ to provide at least one EV17

charge point in parking lots with more than 20 spaces, effective January 1, 2025 [8]. Yet18

many decision makers still adopt a short-term view. As a McKinsey & Company report notes,19

“many building owners do not think or plan for EV charging needs five to eight years out” [2,20

p. 6]. Such short-term orientation can have substantial financial consequences: “Decisions21

made today (...) could cause EV infrastructure costs to compound to hundreds of billions22

of dollars” [2, p. 7] at the macroeconomic level [9]. Business executives in particular lack23

firm-specific decision support for the complex task of planning and operating EV workplace24

charging infrastructure, including modelling how different charging strategies affect peak25

demand, charging costs, and emissions in the medium to long term (5–15 years) [10].26

The groundbreaking advancements in data-driven computing and reasoning capabilities27

now enable organisations to access such highly contextual insights, empowering them to28

navigate these complex, decision-critical environments through advanced analytical insights:29

To plan effectively for low-carbon mobility, workplace operators need tools that can anticipate30

the long-term benefits of installing and operating EV charging infrastructure. This requires31

analysing trade-offs between charging strategies and their impacts on both environmental32

and economic sustainability. As we will outline, executives face a threefold, interdependent33

decision problem: First, sizing infrastructure by deciding how many charge points to install34

based on anticipated employee EV uptake; second, managing demand by choosing whether35

to leave charging unmanaged or coordinate it through smart charging algorithms; and third,36

choosing objectives, which, if smart charging is used, involves deciding whether to minimise37

peak demand, costs, or emissions. These choices determine the firm’s aggregate load profile38

and influence key metrics such as maximum peak demand, total charging cost, and carbon39

emissions, from which trade-off decision tensions arise [11]. Scholars in energy modelling,40

green information systems (IS), and energy informatics have studied the benefits of grid41

service provision from EV batteries [12, 13, 14, 15], partly also in the context of EV workplace42

charging [16]. However, most of these studies adopt the perspective of network operators43
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or electricity market agents, i.e., a system-level perspective. As Ketter et al. [17] and44

Schroer et al. [18] highlight, academic research has yet to provide practitioners with adequate45

methods, data, and systems in the context of the sustainable mobility transition, such as46

those needed to evaluate the trade-offs that arise when planning and operating workplace47

charging infrastructure. Addressing this gap motivates our work.48

We address this organisational problem by posing the following research question: How49

can a decision support system (DSS) tailored to firm-specific electricity data help executives50

evaluate trade-offs between peak load, costs, and emissions in the context of EV workplace51

charging? To answer this, we developed, demonstrated, and evaluated an applicable, i.e.,52

user-friendly and context-specific, open-source web application. The tool enables workplace53

practitioners to model the impact of EV charging on their firm-specific electricity profile.54

With our study, we further aim to quantify the decision tensions firms face when applying55

the DSS to real-world data. Moreover, we aim to assess the perceived value of our DSS for56

practitioners and to identify ways to improve it. We follow the Design Science Research57

(DSR) paradigm [19]. Accordingly, we use rich real-world electricity data and several in-58

depth qualitative interviews with eight medium- to large-sized German companies for the59

development and demonstration of our DSS. In addition, we apply quantitative usability60

testing using the System Usability Scale (SUS) to rigorously evaluate the applicability of our61

artefact. Based on an overall SUS score of 81.8, interviewees have reported to find the web62

application of high practical use, while providing actionable advice for further improvements.63

The remainder of this paper is structured as follows. §2 reviews related literature in64

three areas: (green) IS for low-carbon energy and mobility, smart EV charging, and DSSs for65

data-driven power load modelling. §3 introduces our methodological approach. §4 presents66

the design and development of the artefact. §5 reports the demonstration and evaluation,67

including findings from interviews and usability testing. §6 discusses broader implications68

and contributions of our study, while §7 concludes with key results and an outlook.69

4



2. Background and related literature70

2.1. Information systems for low-carbon energy and mobility systems71

For decades, green IS has emerged as pivotal research community in addressing the72

challenges of sustainability and efficiency in energy and mobility systems by analysing and73

designing digital and applicable solutions with real-world impact [17]. In particular, we sit-74

uate our work within the broader discourse in IS research advocating for more applicable75

knowledge and impactful solutions to address the challenges of the energy transition and76

climate change [20]. Corresponding research focuses, among others, on the design, imple-77

mentation, and use of IS to improve environmental performance across various domains and78

areas, e.g. with respect to sustainable supply chain management [21], (digital) carbon ac-79

counting systems [22], energy-aware business process management [23], and organisational80

digital decarbonisation approaches [24] for environmental sustainability. While, on the one81

hand, such systems aim to enable organisations to monitor, measure, and optimise their82

resource consumption and reduce their ecological footprint, there is, on the other hand, also83

research that emphasises the role of digital technology systems in optimising energy gener-84

ation, distribution, and consumption, often referred to as energy informatics [25]. Studies85

address smart grid management [26], decentralised energy systems [27], and demand-side86

energy management [28], all aiming to facilitate renewable integration and create smart,87

adaptive energy markets and systems.88

In the context of mobility, both green IS and energy informatics have contributed to EV89

charging infrastructure development. Examples include optimised load balancing and renew-90

able integration into charging networks [12], as well as Vehicle-to-Grid (V2G) approaches91

that mitigate peaks through predictive algorithms and dynamic pricing [29]. Since the major-92

ity of these studies focus on network operators or electricity market agents, their perspective93

tends to remain at the systemic level, with an emphasis on market and grid implications.94

User-oriented approaches have improved the EV charging experience, with tools for intelli-95

gent navigation to available charging stations, real-time availability updates, and dynamic96
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pricing to promote energy-efficient charging behaviours [30, 31]. Despite these advances,97

little user-oriented guidance exists on how to plan and operate EV workplace charging in-98

frastructure using firm-specific data - a key enabler for scaling EV adoption and reducing99

emissions in the mobility sector [2, 32].100

2.2. Smart EV charging101

Smart charging is central to sustainable mobility systems. It involves managing EV102

charging loads according to predefined objectives, such as minimising peak demand, re-103

ducing costs, or lowering carbon emissions [33]. To this end, Zheng et al. [34] provide a104

review on common objective functions and modelling approaches in this field. In workplace105

contexts, algorithms have been developed to jointly optimise infrastructure sizing and the106

assignment of vehicles to charging spots, see e.g., [3]. When combined with on-site solar107

generation, real-time energy management systems can produce optimal charging schedules,108

thereby increasing self-sufficiency and lowering operational costs [35]. Bidirectional charging109

(V2G) provides an additional benefit by drawing energy from EV batteries during electricity110

demand peaks at industrial sites [36]. While these studies provide valuable insights, they111

are not easily transferable across workplace settings. Much of the literature frames work-112

place charging primarily as an engineering problem, focusing on energy or cost optimisation113

[37]. Less attention is given to the organisational decision-making processes that guide in-114

frastructure deployment and management [10]. This gap highlights a practical challenge for115

operators: evaluating the strategic trade-offs among different charging strategies. Address-116

ing this requires integrated DSSs that combine robust optimisation models with support for117

organisational decision-making.118

2.3. Decision support systems for data-driven modelling of power loads119

DSSs have a long history in sustainability and energy management research, especially120

within the green IS and energy informatics communities [17]. They frequently use advanced121

analytical methods such as Artificial Intelligence (AI)-driven forecasting, simulation, and122
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optimisation to support operational decisions about electricity demand [18, 12]. Examples123

include Gust et al. [38], who combine predictive analytics and optimisation for grid planning,124

or Schuller et al. [39], who benchmark smart charging and V2G strategies while accounting125

for driving patterns, battery degradation, and energy price variability, thus emphasising the126

complexity and practical relevance of detailed economic modelling within DSS frameworks.127

Despite these advances, most DSSs either focus on technical optimisation alone or rely on128

generic datasets. Few integrate detailed, data-driven load simulation with firm-specific de-129

cision contexts. Recent work in green IS has explicitly called for such integration [17, 18].130

Our study responds to this gap by contributing a DSS that combines technical modelling131

with managerial decision processes. By embedding firm-specific data and making trade-132

offs explicit, we extend DSS design beyond optimisation and toward broader organisational133

sustainability transitions.134

3. Methodology135

3.1. Research design136

We applied a Design Science Research (DSR) approach, which “creates and evaluates137

IT artefacts intended to solve identified organisational problems” [40, p. 77]. Our process138

followed five steps: (i) problem identification, (ii) definition of objectives, (iii) design and139

development of the artefact, (iv) demonstration and rigorous evaluation, and (v) communi-140

cation of design knowledge. Three design cycles (cf. Figure 1) allowed us to iteratively refine141

the artefact. Unlike the six-step process by Peffers et al. [19], we report on steps 4 and 5142

together, as previous studies have done [41].143

As outlined above, we identified a central organisational problem in line with previ-144

ous literature [10]: executives often lack analytical foresight about the grid impacts of EV145

workplace charging. In particular, they have limited awareness of the benefits of managing146

charging points through smart charging versus leaving charging uncontrolled [10], particu-147

larly regarding the quantification of their impacts. While uncontrolled charging typically148
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Figure 1: Overview of our DSR process; adapted from Peffers et al. [19] and Schoormann et al. [41]

begins immediately upon plug-in as employees arrive at the workplace, potentially leading149

to significant peak demand spikes at the aggregate level when large numbers of EVs require150

simultaneous charging, smart charging allows for distributed load management aligned with151

pre-defined objectives, such as minimising peak demand, reducing charging costs, or low-152

ering emissions [33]. The choice among these smart charging strategies depends upon the153

local decision context, for instance, reducing peak demand to accommodate limited on-site154

grid capacity, or addressing financial considerations (charging costs) and environmental or155

regulatory compliance requirements (carbon emissions minimisation) [34]. A mathematical156

formulation of the optimisation model can be found in Tables 4–5 of [42] and is explained in157

§4.1 in more detail. To address this real-world challenge, we designed a generic, open-source158

DSS prototype that enables firms to model charging strategies with their own data. After159

identifying the problem (step 1), we defined objectives (step 2), designed a prototype (step160

3), and demonstrated and evaluated it with firms in our sample (steps 4–5). Note that we161

use the data collected during steps 2-5 comprehensively across design cycles 1-3.162
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3.2. Sampling approach163

We recruited eight firms for the demonstration and evaluation of our DSS. These firms,164

introduced in Table 1 in full detail based on decision-critical data, form our sample. We do165

not treat them as ‘case studies’ in the conventional sense. Instead, we used their contextual166

and load profile data to develop and parametrise the DSS and to demonstrate its usability.167
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Table 1: Sample overview, including firm-specific modelling inputs. IDs are used as anonymous identifiers.

DC 1 ID Sector Electricity consumption (p.a.) Main demand source Work shifts # Cars EV rate (status quo) Type of analysis

2 1 Media & publishing 20,000 MWh Printing machinery

AM (06:00–14:00) 90

5% Firm-specific dataPM (14:00–22:00) 80

Night (22:00–06:00) 60

2 2 Office supplies 232 MWh Office buildings Office staff (08:00–16:00) 50 25% Firm-specific data

2 3 Healthcare 6,137 MWh Hospital operations Fleet (16:00–07:30) 50 10% Firm-specific data

2 4 Pharma 6,000 MWh Drug manufacturing

AM (06:00–14:00) 100

10% Firm-specific data
PM (14:00–22:00) 150

Night (22:00–06:00) 80

Office staff (08:00–16:00) 300

3 5 Paper production 197,290 MWh Production machinery

AM (06:00–14:00) 250

5% Firm-specific data
PM (14:00–22:00) 175

Night (22:00–06:00) 80

Office staff (08:00–16:00) 60

3 6 Manufacturing 4,000 MWh Compressed air generation

AM (06:00–14:00) 100

30% Firm-specific dataPM (14:00–22:00) 70

Office staff (08:00–16:00) 100

3 7 Building materials 2,000 MWh Office buildings, HVAC Office staff (07:30–17:00) 500 12% Standard load profile

3 8 Energy infrastructure 1,724 MWh Production machinery

AM (06:00–14:00) 170

3% Firm-specific dataPM (14:00–22:00) 30

Office staff (07:00–16:00) 140

1 DC = Design cycle
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We selected firms according to three criteria. First, they were medium- to large-sized168

organisations with extensive parking spaces (>40) and concrete plans to install EV charg-169

ing. The sector each firm operates in and the respective energy intensity of its underlying170

business processes can vary from small-scale, energy-efficient office operations to large-scale,171

manufacturing-heavy and energy-intensive environments operating on multiple work shift172

schedules daily (cf. Table 1). Second, we targeted firms with limited in-house energy man-173

agement capabilities, indicated by the absence of dedicated procurement departments. Third,174

we restricted the sample to Germany, where the EU’s Directive 2018/844 on the energy per-175

formance of buildings (GEIG) has applied since January 2025 [8] (cf. §1).176

Table 1 summarises the eight sample firms, including their sectors, annual electricity177

consumption, and main sources of demand. While we developed a first version of the tool,178

i.e., design cycle 1, based on prior literature, such as [10], we evenly distributed the firms179

between design cycles 2 and 3. Companies 1–4 (IDs) evaluated the initial version of our180

artefact (cf. Figure 6 of [42]) in design cycle 2, while companies 5–8 (IDs) assessed the181

enhanced version (cf. Figure 7 of [42]) in design cycle 3. We sourced participating firms182

through three channels: (i) digital flyer advertisements on LinkedIn, (ii) targeted outreach183

via cold emailing, and (iii) the authors’ professional networks.184

3.3. Data collection and analysis185

We used a mixed-methods interview design with both qualitative and quantitative com-186

ponents. For each firm, we conducted two semi-structured interviews using Microsoft Teams.187

The interview guides are listed in Tables 6–7 of [42]. The first interview explored the firm’s188

current practices and plans for EV workplace charging, energy management, and procure-189

ment, and included a short demonstration of the DSS. Between interviews, firms were asked190

to provide contextual data (Table 1) which parametrised the DSS. The second interview191

demonstrated the DSS using the firm’s own data, presented analytical insights, and col-192

lected feedback on functionality, usability, and perceived usefulness. At the end, participants193

completed the SUS questionnaire [43] to measure perceived usability.194

11



Table 2: Data collection timeline and interviewees’ role descriptions, grouped by design cycles

DC 1 ID Role of interview partner(s) 2

Date of interviews

Interview 1 Interview 2

Duration (mm:ss) Duration (mm:ss)

2 1
a: Corporate sustainability 26.11.2024 04.12.2024

b: Finance/energy procurement (45:39) (49:54)

2 2 a: Head of facility management
10.12.2024 14.01.2025

(28:29) (42:33)

2 3
a: Strategic purchasing 28.11.2024 17.01.2025

b: Fleet management (31:01) (39:06)

2 4
a: Energy provisioning (engineering) 22.01.2025 21.02.2025

b: Head of corporate responsibility (36:22) (46:39)

3 5
a: Executive assistant CEO 05.03.2025 30.04.2025

b: Energy portfolio manager (36:41) (49:07)

3 6

a: Sustainability manager
05.03.2025 06.05.2025

b: Project manager (engineering)
(38:17) (40:39)

c: Team lead maintenance

3 7 a: Sustainability manager
11.04.2025 28.04.2025

(47:05) (29:11)

3 8 a: Engineer sustainability manager
30.04.2025 07.05.2025

(18:55) (36:13)

1 DC = Design cycle;

2 Note that interviews were attended by either one, two, or three company representa-

tives, where letters (a), (b), and (c) specify each individual’s role.
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In total, we conducted interviews with 14 practitioners from the eight firms. Participants195

represented roles across sustainability, energy, facilities, fleet, and finance. This variety196

ensured that our evaluation reflected diverse organisational perspectives. Table 2 provides197

more contextual information pertaining interviewees’ roles within the firm, and the date and198

duration of each interview. Moreover, Figure 2 depicts the entire data collection process for199

each participating firm.200

Figure 2: Summary of data collection points for each participating firm.

For qualitative analysis, we applied a deductive coding approach, i.e., our coding cate-201

gories were defined in advance, based on established DSSs and IS evaluation dimensions. In202

our study, we structured the coding scheme around four categories: (i) Perceived usefulness,203

(ii) usability and ease of use, (iii) organisational value, and (iv) suggestions for improvement.204

These categories align closely with prior frameworks. Perceived usefulness corresponds to205

Davis’ [44] construct of usefulness in the Technology Acceptance Model. Usability and ease206

of use map onto system quality and user satisfaction, as outlined in the DeLone & McLean207

[45] IS Success Model and often assessed through usability instruments such as the SUS [46]208

or user satisfaction surveys [47]. Organisational value reflects the dimension of net benefits209

in the DeLone & McLean [45] model, capturing how systems contribute to broader organi-210

sational performance and decision-making. Finally, suggestions for improvement serve as an211

open category to capture user-driven recommendations not covered by existing frameworks,212

ensuring that our analysis remained responsive to context-specific insights.213
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4. Design and development of the artefact214

4.1. Design cycle 1215

In the first design cycle, we focused on building the optimisation core of the DSS. We216

implemented a mixed-integer linear programming model for smart charging, drawing on the217

formulations of Ioakimidis et al. [36] and Zheng et al. [34]. The model determines optimal218

charging schedules by minimising one of three objectives - peak demand, electricity costs, or219

carbon emissions - subject to physical and operational constraints such as battery capacities,220

charging power limits, arrival and departure times, and exogenous load profiles.221

Our modelling framework follows the approach introduced by Seger et al. [10], to which222

we refer for details on the full optimisation problem and solution method. In our imple-223

mentation, we coded the optimisation algorithms in Python and connected them to the224

DSS interface through a modular back-end (cf. design cycles 2-3). This allows users to run225

firm-specific simulations based on their own data. The full model formulation, including226

objective functions and constraint sets, is provided in Tables 6–7 of [42] for transparency227

and reproducibility. By concluding design cycle 1, we had established a technically validated228

optimisation module that served as the engine of the DSS, forming the basis for subsequent229

cycles of real-world application and user evaluation (design cycles 2-3).230

To support early design decisions, we created a high-fidelity mock-up of the user interface231

in Figma. This is a widely used approach to save valuable resources (time, development costs232

etc.) within Design Science and user-centred design [48]. The mock-up defined the layout and233

components of the dashboard, including a three-column structure with a collapsible sidebar234

for data input, a central panel for line graphs, and a right-hand panel for key metrics. This235

static prototype (cf. Figure 6 of [42]) served as the basis for subsequent development.236

4.2. Design cycle 2237

In the second cycle, we translated the static Figma prototype into a functional web238

application (cf. Figure 7 of [42]). We used the open-source toolkit Streamlit, which offers239
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Python packages for building interactive applications without resource-intensive front-end240

programming. The application interface consists of three main parts. First, a sidebar collects241

firm-specific input such as (a) number and timing of work shifts, (b) number of employee242

cars per shift, (c) EV battery size distributions, (d) electricity load profiles (uploaded as243

.xls or .csv files), and (e) analysis preferences (date, solver, charger power). While these244

exogenous input parameters are held constant, the decision maker gets to choose the EV245

electrification rate freely between 0% (no EV present) to 100% (fully electrified car fleet), in246

alignment with different future electrification scenarios. Second, the main panel visualises247

electricity demand profiles under three charging strategies: peak minimisation & valley filling248

(PM-VF) (top row), charging cost minimisation (CCM) (middle row), and carbon emission249

minimisation (CEM) (bottom row; cut off in the screenshot in Figure 7 of [42]). Each plot250

compares uncontrolled charging with the corresponding smart charging strategy. Third, bar251

charts display the Value of Smart Charging (VoSC), defined as the relative change (%∆)252

between smart- and uncontrolled charging for each key metric (i) maximum peak, (ii) total253

charging costs, or (iii) carbon emissions. The system updates results in real time when input254

parameters are changed.255

4.3. Design cycle 3256

After demonstrating the first functional prototype with firms in our sample (design cycle257

2, cf. §3.3), we obtained valuable user feedback with actionable advice on what should be258

improved within design cycle 3. We identified 16 feature requests which we subsequently259

clustered into three priority levels (high, medium, low). We categorised feature requests as260

‘high’ based on (i) relevance (certain features have been requested several times throughout261

interviews), (ii) technical feasibility, and (iii) resource availability (e.g. time) to develop the262

request. In the third design cycle, we implemented the following high-priority improvements:263

a multi-period analysis allowing users to view results daily, weekly, or monthly, with shaded264

confidence intervals indicating variability; external data integration enabling automated re-265

trieval of German electricity price data from entso-e’s transparency platform (bidding zone266
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DE-LU) [49] and grid-carbon intensity data from electricity maps [50]; in-app explanations267

providing contextual tooltips to improve self-efficacy and understanding; graph enlargement268

and export functions for reporting purposes; an option to display the VoSC in absolute rather269

than relative terms; and improved visual clarity through tick boxes allowing selective display270

of external electricity price and carbon intensity curves.271

Remaining medium- and low-priority features are documented in §A.5 of [42]. These272

relate to (a) tariff-specific grid carbon intensity measures, (b) tariff-specific electricity price273

data (fixed/dynamic), (c) data-driven forecasting of firm’s electricity load profile, (d) firm-274

specific peak pricing, (e) analytical specifications (CO2 emissions: accounted vs. actually275

emitted), and (f) advanced analytics for tracking of seasonal effects. The updated and final276

DSS is shown in Figure 3.277

Figure 3: Updated web application post implementation of interviewees’ feedback (design cycle 3)
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We evaluated the impact of these feature changes on users’ perceived usefulness of the278

system by repeating qualitative- (semi-structured interviews) and quantitative (SUS ques-279

tionnaire) data collection with four additional firms (cf. §3.3) as part of design cycle 3. These280

findings are reported in more detail in §5.3 and §A.5 of [42].281

5. Demonstration, evaluation, and findings282

5.1. Application of our artefact283

We demonstrated the DSS using firm-specific empirical data rather than generic or syn-284

thetic inputs. This approach increased the external validity of our results and gave inter-285

viewees a strong incentive to participate. Using their own data also made the simulation286

outputs more meaningful and easier to relate to.287

Each firm in our sample provided information on its annual electricity consumption, main288

demand sources, work shift schedules, number of employee cars, and current EV adoption289

rates. We used these data, summarised in Table 1, to parametrise the DSS. Further con-290

textual information is provided in Table 13 of [42] regarding (i) high-level characteristics291

of the firm’s electricity load profile, (ii) procurement strategy, (iii) expected future electric-292

ity consumption, and (iv) anticipated challenges in managing electricity demand. One firm293

(ID 7) was unable to share detailed load profiles; in this case, we relied on a standard load294

profile. For the remaining firms, we simulated electricity load profiles under three charging295

strategies - peak minimisation & valley filling (PM-VF), charging cost minimisation (CCM),296

and carbon emission minimisation (CEM), in response to varying EV adoption rates [%].297

For each scenario, the DSS also calculated the VoSC, expressed as the relative change [%∆]298

in peak demand, charging costs, or carbon emissions compared to uncontrolled charging.299

Figure 4 presents the savings potential (‘VoSC’ [%∆]) from smart charging strategies,300

exemplarily for firms 5 and 6 (ID). It includes results for all three charging strategies (PM-301

VF, CCM, CEM). The boxplots, which entail 28 single-day model results from February302

2024/25, show how the savings potential changes as the rate of EV adoption [%] increases.303
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Figure 4: Visual summary of VoSC [%∆] (y-axis) model results for increasing EV adoption rates of 15%,

50%, 100% (x-axis) w.r.t. each key metric max. peak demand (blue), charging costs (orange), and carbon

emissions (green), differentiated by charging strategies PM-VF (top row), CCM (middle row), CEM (bottom

row), exemplarily for participating firm 5+6 (ID) (column view). Note that lower %∆ numbers (y-axis) refer

to higher saving potentials.
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VoSC [%∆] model results of all firms (IDs 1–8) are provided in Figure 8 of [42]. In304

general, we find three key insights: First, if firms opt for peak minimal charging (PM-VF),305

the graphs show that this charging strategy yields the lowest overall peaks across the sample306

(IDs), with higher savings potential as the EV rate increases. Second, contrary to peak307

minimal charging, if optimising for charging costs (CCM) or carbon emissions (CEM), the308

achieved savings potential remains relatively constant, independent of the EV adoption rate.309

Third, and lastly, when comparing results across firms (IDs 1–8), we observe substantial310

differences in variability, measured by the boxplots’ whisker lengths, for certain key metrics311

(e.g. cf. Figure 4: PM-VF (top row): charging costs, ID 5 vs. ID 6). This suggests that the312

model results for each firm are highly context-dependent.313

5.2. Qualitative findings: Managerial insights from interviews314

The purpose of this study is not only to evaluate the usability of the developed artefact315

(cf. §5.3), but also to examine how the DSS influences executives’ understanding, dialogue,316

and capacity for long-term planning regarding EV workplace infrastructure. To this end, we317

conducted interviews with 14 practitioners from 8 firms, each holding managerial responsibil-318

ities across sustainability, energy, facilities, fleet, and finance departments. In the following,319

we present our findings as six themes that illustrate how the DSS shapes decision-making.320

Surfacing and managing trade-offs: Our findings indicate that the DSS enables ex-321

ecutives to explicitly weigh costs, peak load, and emissions, thereby moving beyond intuition322

toward structured comparisons. This is illustrated by interviewee 2a, who noted feeling em-323

powered to compare quantitative trade-offs across alternatives: “Just being able to say: ‘OK,324

what alternatives do I have? Do I want to reduce costs or do I want to reduce CO2?’ And325

that really does make a difference.” [ID: 2a]. He further emphasised the value of prioritisa-326

tion and data-driven decision-making: “To set priorities and (...) start working with data327

in the company instead of relying on gut feelings” [ID: 2a], and highlighted the efficiency328

gains: “It’s just nice to be able to argue using valid data, (...) something I’d otherwise have329

to gather myself with a lot of effort.” [ID: 2a]. Likewise, respondent 6a stressed the practical330
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usefulness of the web application “because it shows how you can weigh different factors” [ID:331

6a], which, in turn, “help[s] to make a more informed decision than one might otherwise have332

made” [ID: 6a]. The role of data-driven guidance is also evident in interviewee 5b’s reflec-333

tions on determining the appropriate scale of charging infrastructure: “What definitely helps334

is getting guidance on: How large should I dimension my charging infrastructure? What335

do I need to consider, what kind of costs and savings are actually involved if I incorporate336

different automation features?” [ID: 5b]. He also stressed the importance of integrating337

cost considerations with smart charging strategies: “What I find especially interesting is the338

combination of charging cost optimisation with smart charging, because (...) you can really339

see the impact of trying to control your demand based on cost, rather than just managing340

everything purely based on demand.” [ID: 5b]. Collectively, these insights highlight the DSS’s341

role in revealing decision tensions and supporting multi-objective reasoning.342

Changing mental models and strategic framing: The analysis also reveals that the343

DSS encourages a shift in perspective from operational concerns toward strategic planning344

and investment. Interviewee 4a underscored the future relevance of data-driven tools, stating:345

“I think a tool like this is incredibly important for the future, especially because it helps you346

see what’s going on and how things can be optimised.” [ID: 4a]. Adding to this, interviewee347

5b perceived the tool to “be helpful as one element in discussing an investment decision”348

[ID: 5b]. Respondent 8a expressed strong interest in integrating such a decision-enhancing349

tool into strategic planning, viewing it as a way to strengthen the currently rather limited350

planning practices: “At the moment, we really don’t have anything in our discussions - except351

maybe what we calculate ourselves somehow. But a tool like this would definitely be a huge352

support, especially if it provides real values based on company-specific data.” [ID: 8a]. In353

summary, our DSS fosters foresight planning and strategic framing, situating EV charging354

within broader organisational transitions.355

Facilitating cross-departmental dialogue: Feedback from the interviews suggests356

that the DSS empowers non-specialists to contribute to discussions while fostering a shared357
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understanding across departments. This is exemplified by participant 2a, who expressed358

increased confidence in engaging with broader decision-making forums: “I would now imme-359

diately feel able to join a larger meeting, make suggestions, (...) being able to say: Okay,360

what happens in scenario X or Y? How does it behave there?” [ID: 2a]. Interviewee 6a, a361

Sustainability Manager, reinforced this point by highlighting the value of visualisation for362

making complex issues more accessible: “A lot of what you usually try to explain just in363

words is shown visually here - and that makes it memorable. (...) It’s just an excellent basis364

for discussion, and everyone would approach it from their own perspective - and I believe365

that would really help with making a decision.” [ID: 6a]. She further noted its potential in366

executive-level discussions: “I could definitely imagine that if we were to discuss this with367

our commercial director, it would be an exciting foundation to build on.” [ID: 6a]. Taken368

together, these accounts highlight how the DSS functions as a boundary object, supporting369

collaboration across sustainability, energy, facilities, fleet, and finance functions.370

Perceived usability and adoption potential: Usability, which is further examined371

in the following section (§5.3) through quantitative results from the SUS questionnaire, also372

emerged as a central theme in the qualitative interviews. Simplicity, clarity, and visual design373

were consistently noted as factors that build user confidence and reduce barriers to adoption.374

For example, interviewees described the DSS as “kept pretty simple” [ID: 1b], making it375

“definitely user-friendly and dynamic” [ID: 1b], with “three clear goals and graphics that are376

self-explanatory” [ID: 2a]. Interviewee 7a emphasised the appeal of a streamlined interface,377

noting that the web application “is clearly laid out, attractive to use, and not overloaded”378

[ID: 7a]. Visual aspects were further underlined by interviewee 8a, who remarked: “I’m (...)379

a very visual person, and I like that there are lots of charts.” [ID: 8a]. Overall, the interviews380

point to a strong perception of usability, reinforced by the SUS score of 81.8 (§5.3), which381

indicates high adoption potential at the organisational level.382

External validation and credibility: Executives particularly valued instances where383

the DSS outputs aligned with their own systems and data, as this alignment reinforced trust384
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in the tool. Interviewee 4a illustrated this point, noting: “I already like that the red curve385

reflects reality - that’s a good start, because I checked in my own program in parallel, and386

it looks similar.” [ID: 4a]. He further added: “It’s great that the theory already reflects the387

reality, I really like that.” [ID: 4a]. These reflections underscore that credibility of model388

outputs is a prerequisite for adoption in strategic decision-making contexts.389

Overwhelm and complexity concerns: Although most respondents described the390

DSS as simple and easy to use, several interviewees raised concerns about potential informa-391

tion overload, highlighting the importance of maintaining simplicity. Interviewee 7a noted392

that “the more overloaded it [the DSS] is, the less people will use it.” [ID: 7a]. Similarly,393

respondent 5b cautioned against excessive complexity, stating: “I can’t use something that394

suddenly overwhelms me with so much information that I can’t see the forest for the trees.395

I actually need to see the specific information that’s supposed to come through - clearly and396

deliberately.” [ID: 5b]. These perspectives show that adoption hinges on striking a balance397

between analytic richness and cognitive simplicity, a well-known challenge in DSS design.398

Together, the themes demonstrate how the DSS not only optimises EV workplace charg-399

ing technically, but also reveals trade-offs between competing metrics, reframes decision400

problems strategically, facilitates cross-departmental dialogue, and builds trust through us-401

ability and validation, while balancing analytic richness against risks of overload. These are402

core DSS contributions that extend beyond the energy domain into the broader challenge of403

supporting organisational sustainability transitions. The full list of interview quotes can be404

accessed in §A.5 of [42].405

5.3. Quantitative findings: System Usability Scale (SUS) questionnaire406

We assessed the DSS’s usability with the SUS questionnaire [46]. SUS consists of ten407

standardised statements, alternating between positive and negative wording, each rated on408

a five-point Likert scale from ‘strongly disagree’ (1) to ‘strongly agree’ (5) [51]. Scores are409

calculated on a 0–100 scale, where values above 71 indicate good usability and values above410

81 are considered ‘excellent ’. The formal mathematical derivation to obtain the SUS score is411
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included in §A.2 of [42]. Moreover, an overview of the ten SUS items can be found in Table412

14 of [42], in line with the individual rating from each respondent, differentiated by design413

cycles 2 and 3. We received 11 completed questionnaires: six from design cycle 2 and five414

from design cycle 3. The average SUS score across all responses was 81.8, which falls into415

the ‘excellent ’ category. By comparison, the average SUS score for web-based user interfaces416

is 68 [52]. This suggests that our DSS performs well above typical benchmarks. Looking417

at the design cycles separately, cycle 2 achieved an average SUS of 87.1 (‘best imaginable’ ).418

Cycle 3 averaged 75.5, which is considered ‘good’.419
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Figure 5: Distribution of participants’ responses in each Likert category, from ‘strongly disagree’ (dark red)

to ‘strongly agree’ (dark blue). Results combine responses from design cycle 2 (n = 6) and 3 (n = 5).

Figure 5 illustrates the distribution of responses for each of the ten SUS items across420

both cycles. The combined results indicate strong usability ratings, reflecting positive user421

perceptions regarding ease of use (Q3), simplicity (Q2), integration of system functions (Q5),422

consistency (Q6), and overall willingness to frequently use the system (Q1). Respondents423

also clearly indicated that the system does not require extensive initial learning (Q10) or424

technical support (Q4), nor did they perceive it as cumbersome (Q8). Furthermore, par-425
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ticipants generally felt confident using the system (Q9) and believed most people would426

learn the system quickly (Q7), although minor neutral responses suggest potential for fur-427

ther enhancing user guidance. In sum, the quantitative results align with our qualitative428

findings: users perceived the DSS as clear, practical, and highly usable. The SUS score of429

81.8 confirms its strong adoption potential in organisational settings. Overall, the evaluation430

of our artefact illustrates the high real-world applicability and strong usability of our web431

application, which serves as a DSS for business executives.432

6. Discussion and contribution433

Investing in EV workplace charging and electrifying company fleets can deliver substantial434

benefits. Prior studies estimate annual savings, per firm, of up to ¤100k and emission435

reductions of around 250 tCO2 [4]. Our findings build on this evidence by showing how such436

benefits can be contextualised, quantified, and operationalised through a DSS.437

From a theoretical perspective, our work follows an ‘exaptation’ strategy within the438

Knowledge Innovation Matrix [53]. We repurpose existing optimisation algorithms for the439

dedicated application of workplace charging. In doing so, we instantiate a DSS artefact tai-440

lored to a specific organisational context. Our solution also classifies as ‘Decision-support sys-441

tem’, where humans (business executives) and machines (optimisation algorithms) “interact442

in mutually supportive patterns of iterative sequential or parallel activities”, thus augment-443

ing human cognitive abilities [54, p. 2]. Concerning DSR contributions, our web application444

is a situated implementation of an artefact, tailored to the decision context of EV work-445

place charging. Hence, we argue that our software instantiation contributes to DSR through446

practical, highly specific knowledge at ‘Level 1’, as classified by Gregor and Hevner [55].447

Responding to recent scholarly calls [17, 18], the novelty of our work lies in its user-448

centred approach to solving a real-world organisational problem within the broader challenge449

of the sustainable mobility transition. Our DSS empowers business executives to make450

informed decisions about planning and operating EV workplace charging infrastructure. We451
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demonstrated and rigorously evaluated the system using real-world electricity consumption452

data from our sample firms and assessing usability with the SUS questionnaire. We selected453

DSR as the guiding paradigm because of its iterative and practice-oriented nature. This454

approach enabled us to continuously update and improve the prototype based on participant455

feedback across three design cycles.456

The resulting open-source web application, accessible at https://ev-workplace-charging.457

streamlit.app/, provides detailed insights into how different charging strategies (PM-VF,458

CCM, CEM) affect peak demand, charging costs, and carbon emissions. These simulations459

explicitly account for varying employee EV adoption rates (15–100%) and are tailored to460

each site’s unique load profile and workplace context. The outputs deliver decision-critical461

information, enabling executives from sustainability, energy, facilities, fleet, and finance to462

understand and navigate trade-offs that were previously implicit. Consequently, we argue463

that the DSS facilitates informed consensus-building around optimal charge point operations.464

We compared our artefact to prior energy-related DSSs (cf. Table 3). Previous systems465

often rely on generic or grid-level datasets, focus on a single optimisation objective, and466

are primarily designed for technical experts [56, 57, 58]. By contrast, our DSS integrates467

firm-specific data by embedding contextual load profiles into the analysis, represents trade-468

offs explicitly by quantifying costs, peak demand, and emissions side by side, and targets469

organisational decision makers, thereby fostering dialogue across sustainability, facilities,470

finance, and fleet management. This combination extends DSS design beyond technical471

optimisation. It shows how firm-specific modelling and trade-off representation can support472

sustainability transitions at the organisational level.473

Firms can derive several practical implications from our study. First, when evaluating474

the results of each charging strategy in isolation, we find that, on average, each strategy475

achieves its intended outcome. For example, PM-VF consistently produces the lowest peaks,476

while CCM leads to the lowest charging costs (cf. Figure 4). This finding demonstrates the477

external validity of our model, as each optimisation strategy delivers what it was designed to478

25

https://ev-workplace-charging.streamlit.app/
https://ev-workplace-charging.streamlit.app/
https://ev-workplace-charging.streamlit.app/


achieve. Second, however, our results also show that optimising for the overall lowest charging479

costs (CCM) or the lowest carbon emissions (CEM) comes at a trade-off. Specifically, these480

strategies incur substantially higher peak loads, an effect that becomes more pronounced as481

EV adoption increases (cf. Figure 4: second and third row). Third, when comparing results482

across firms (cf. Figure 4), we observe substantial contextual variability. This is evident483

in the different lengths of the whiskers in the boxplots, which capture the variability of the484

results across individual model runs. These differences underline the importance of firm-485

specific data and analysis, and they demonstrate the added value of our web application as a486

tool tailored to each organisational context. In addition, from a DSS evaluation perspective,487

the combined qualitative and quantitative results of our study provide tangible evidence488

of the system’s usability and practical value for corporate decision makers. Simplicity and489

clarity emerge as key success factors for adoption, as they lower barriers for non-technical490

users and increase confidence in applying the system to strategic decision-making.491

For policymakers, our study highlights the importance of managing EV workplace charg-492

ing loads in a comprehensive manner by using highly granular DSSs that incorporate firm-493

specific parameters. Across most firms in our sample, the DSS simulations indicate an494

average carbon emissions savings potential of approximately 20% (cf. Figure 8 of [42]: sec-495

ond row). This demonstrates that firm-level optimisation measures are both feasible and496

actionable, and that they can significantly enhance demand-side flexibility in the electric-497

ity system. Such flexibility is widely recognised as a critical element in achieving the EU’s498

net-zero emissions target by 2050. While the EU-wide Energy Performance of Buildings499

Directive (EPBD) [59], which has been transposed into German law through GEIG [8], rep-500

resents an important first step towards scaling workplace charging infrastructure, we argue501

that additional regulatory frameworks are needed to incentivise the uptake of smart charging502

algorithms.503

Lastly, in terms of methodological procedure, it is worthwhile noting that we ended the504

DSR process after three design cycles due to SUS score saturation (final score: 81.8).505
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Table 3: Comparison of existing energy-related DSSs and our DSS contribution.

Dimension Prior energy-related DSSs Our DSS contribution

Data scope Rely on generic scenarios,

grid-level datasets, or

engineering assumptions [56]

Integrates firm-specific electricity

load data and workplace context to

deliver tailored insights

Decision

framing

Emphasise single-objective

optimisation (e.g., cost, peak

demand, or emissions

separately) [57]

Makes multi-objective trade-offs

explicit by quantifying costs, peak

demand, and carbon emissions

simultaneously

User

orientation

Designed primarily for

technical experts (e.g., grid

operators, energy engineers)

[58]

Designed for organisational decision

makers (sustainability, energy,

facilities, fleet, finance) to enable

cross-departmental dialogue

System design Often research prototypes

with limited validation in

practice [60]

Open-source, interactive web

application, validated with eight

firms; achieves high usability (SUS

81.8 = ‘excellent’)

Contribution

to DSS field

Extend modelling capabilities

in energy informatics [39]

Extend DSS design for sustainability

transitions by embedding

firm-specific data, trade-off

representation, and collaborative

decision support
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7. Conclusion and outlook506

Data-driven DSSs are becoming increasingly important tools for facilitating the electrifi-507

cation of mobility and broader organisational sustainability transitions (cf. §2.3). Although508

many business executives recognise the complexity of this transition, particularly in relation509

to workplace charging (cf. §5.2), our findings show that most firms lack the granular insights510

needed to anticipate how this shift will unfold in practice. The web application we devel-511

oped, demonstrated, and evaluated with real-world data is designed to address this gap by512

providing a dedicated environment in which firms can simulate EV charging strategies based513

on their own data and parameters. By making trade-offs explicit and easy to understand, the514

system supports decision makers in navigating a challenging and highly dynamic landscape.515

At the same time, we acknowledge several limitations of our study. First, the DSS cur-516

rently produces static, non-probabilistic forecasts based on historical load profiles, which517

restricts its predictive capacity. Second, the current version of our DSS does not yet accom-518

modate complex, firm-specific tariff structures. Third, our evaluation was based on a sample519

of eight firms, all located in Germany. This limits the generalisability of the findings to other520

countries or sectors. These limitations also point to directions for future research and devel-521

opment. Subsequent iterations of the DSS could integrate stochastic time-series forecasting522

methods to enhance predictive power. Emerging AI models, such as TimeGPT, could pro-523

vide off-the-shelf solutions for this task. Future studies could also extend the functionality of524

the DSS to incorporate more complex tariff structures and the integration of on-site renew-525

able generation. Moreover, replication of the study in different geographical and industrial526

contexts would be valuable in assessing the system’s robustness and transferability. Looking527

further ahead, the DSS framework could be adapted to manage other forms of distributed528

energy resources, such as depot charging for delivery fleets or heavy-duty vehicles, as well as529

the operation of stationary battery energy storage systems.530

In conclusion, our DSS contributes a practical, user-centred solution to a pressing organ-531

isational and societal challenge. It enables firms to better plan and operate EV workplace532
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charging infrastructure while explicitly surfacing the trade-offs between peak demand, costs,533

and emissions. By doing so, it not only advances DSS research but also offers policymakers534

and practitioners an actionable pathway to support the sustainable mobility transition.535
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