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Abstract

The rapid adoption of electric vehicles (EVs) intensifies the need for workplace charging in-
frastructure, which can shift demand from peak evening hours to daytime and better align
with renewable generation. Yet many firms underestimate the long-term implications of
workplace charging for electricity demand, costs, and carbon emissions. To address this
foresight gap, we developed an open-source decision support system (DSS) that uses firm-
specific data and data-driven modelling to simulate the medium- to long-term impacts (5-15
years) of different workplace charging strategies. Our DSS enables executives to evaluate
trade-offs between peak load management, cost minimisation, and emissions reduction when
planning and operating EV charging infrastructure. Following the Design Science Research
approach, we developed, demonstrated, and evaluated our DSS with rich real-world data
from eight German companies. Additional interviews showed that executives particularly
value the tool for making trade-offs explicit and for fostering cross-departmental dialogue.

Usability evaluation with the System Usability Scale resulted in a score of 81.8, confirming
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high usability. Our research advances the DSS literature by extending prevailing DSS design
for sustainability transitions through the integration of firm-specific data, explicit trade-off
representation, and collaborative decision support. In doing so, it strengthens the user-
oriented perspective within the sustainable mobility transition discourse, which has so far
been dominated by system-level analyses. Responding to several scholarly calls, our study
contributes to green information systems, data-driven operations research, and energy mod-
elling by demonstrating an applicable, user-oriented DSS. Ultimately, our artefact supports
organisational transitions towards low-carbon mobility by revealing decision tensions that

are otherwise obscured.

Keywords: Green Information Systems, Design Science Research, Sustainable Mobility,

Charging Infrastructure, Open-Source Web Application, Decision Support.

1. Introduction

By 2030, the International Energy Agency projects annual sales of eight million passenger
electric vehicles (EVs) in Europe. This is almost four times the 2024 level. It will increase
electricity demand for EV charging more than threefold, reaching 82 GWh [I]. Public charg-
ing stations, including those at workplaces, will therefore play an increasingly important
role. This is particularly relevant for people without access to home charging, who are more
likely to come from less affluent backgrounds |2, [3].

For firms, the stakes are considerable: Recent analyses suggest that investing in workplace
charging infrastructure and electrifying company fleets with renewable-powered EVs can yield
annual savings, per firm, of up to €100k and cut emissions by 250 tC'O5 [4]. With the number
of workplace charge points expected to increase fivefold in the UK and more than double in
Germany by 2030 [5], 6], the need for evidence-based and firm-specific decision support to
guide these investments is becoming increasingly urgent. In response, business executives
now face the task of strategically planning the build-out of EV charging infrastructure.

This is partly driven by stricter environmental regulations, such as the obligation to report

commuting practices as part of Scope 3 emissions [7]. In Germany, firms are further required
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by the ‘Gebdude-FElektromobilitatsinfrastruktur-Gesetz (GEIG)’ to provide at least one EV
charge point in parking lots with more than 20 spaces, effective January 1, 2025 [§]. Yet
many decision makers still adopt a short-term view. As a McKinsey & Company report notes,
“many building owners do not think or plan for EV charging needs five to eight years out” |2,
p. 6]. Such short-term orientation can have substantial financial consequences: “Decisions
made today (...) could cause EV infrastructure costs to compound to hundreds of billions
of dollars” |2, p. 7] at the macroeconomic level [9]. Business executives in particular lack
firm-specific decision support for the complex task of planning and operating EV workplace
charging infrastructure, including modelling how different charging strategies affect peak
demand, charging costs, and emissions in the medium to long term (5-15 years) [10].

The groundbreaking advancements in data-driven computing and reasoning capabilities
now enable organisations to access such highly contextual insights, empowering them to
navigate these complex, decision-critical environments through advanced analytical insights:
To plan effectively for low-carbon mobility, workplace operators need tools that can anticipate
the long-term benefits of installing and operating EV charging infrastructure. This requires
analysing trade-offs between charging strategies and their impacts on both environmental
and economic sustainability. As we will outline, executives face a threefold, interdependent
decision problem: First, sizing infrastructure by deciding how many charge points to install
based on anticipated employee EV uptake; second, managing demand by choosing whether
to leave charging unmanaged or coordinate it through smart charging algorithms; and third,
choosing objectives, which, if smart charging is used, involves deciding whether to minimise
peak demand, costs, or emissions. These choices determine the firm’s aggregate load profile
and influence key metrics such as maximum peak demand, total charging cost, and carbon
emissions, from which trade-off decision tensions arise [11]. Scholars in energy modelling,
green information systems (IS), and energy informatics have studied the benefits of grid
service provision from EV batteries [12, [13], 14}, [15], partly also in the context of EV workplace

charging [16]. However, most of these studies adopt the perspective of network operators
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or electricity market agents, i.e., a system-level perspective. As Ketter et al. [I7] and
Schroer et al. [I8] highlight, academic research has yet to provide practitioners with adequate
methods, data, and systems in the context of the sustainable mobility transition, such as
those needed to evaluate the trade-offs that arise when planning and operating workplace
charging infrastructure. Addressing this gap motivates our work.

We address this organisational problem by posing the following research question: How
can a decision support system (DSS) tailored to firm-specific electricity data help executives
evaluate trade-offs between peak load, costs, and emissions in the context of EV workplace
charging? To answer this, we developed, demonstrated, and evaluated an applicable, i.e.,
user-friendly and context-specific, open-source web application. The tool enables workplace
practitioners to model the impact of EV charging on their firm-specific electricity profile.

With our study, we further aim to quantify the decision tensions firms face when applying
the DSS to real-world data. Moreover, we aim to assess the perceived value of our DSS for
practitioners and to identify ways to improve it. We follow the Design Science Research
(DSR) paradigm [19]. Accordingly, we use rich real-world electricity data and several in-
depth qualitative interviews with eight medium- to large-sized German companies for the
development and demonstration of our DSS. In addition, we apply quantitative usability
testing using the System Usability Scale (SUS) to rigorously evaluate the applicability of our
artefact. Based on an overall SUS score of 81.8, interviewees have reported to find the web
application of high practical use, while providing actionable advice for further improvements.

The remainder of this paper is structured as follows. reviews related literature in
three areas: (green) IS for low-carbon energy and mobility, smart EV charging, and DSSs for
data-driven power load modelling. introduces our methodological approach. presents
the design and development of the artefact. reports the demonstration and evaluation,
including findings from interviews and usability testing. §0] discusses broader implications

and contributions of our study, while §7] concludes with key results and an outlook.
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2. Background and related literature

2.1. Information systems for low-carbon energy and mobility systems

For decades, green IS has emerged as pivotal research community in addressing the
challenges of sustainability and efficiency in energy and mobility systems by analysing and
designing digital and applicable solutions with real-world impact [17]. In particular, we sit-
uate our work within the broader discourse in IS research advocating for more applicable
knowledge and impactful solutions to address the challenges of the energy transition and
climate change [20]. Corresponding research focuses, among others, on the design, imple-
mentation, and use of IS to improve environmental performance across various domains and
areas, e.g. with respect to sustainable supply chain management [21], (digital) carbon ac-
counting systems [22], energy-aware business process management [23], and organisational
digital decarbonisation approaches [24] for environmental sustainability. While, on the one
hand, such systems aim to enable organisations to monitor, measure, and optimise their
resource consumption and reduce their ecological footprint, there is, on the other hand, also
research that emphasises the role of digital technology systems in optimising energy gener-
ation, distribution, and consumption, often referred to as energy informatics [25]. Studies
address smart grid management [26], decentralised energy systems [27], and demand-side
energy management [28], all aiming to facilitate renewable integration and create smart,
adaptive energy markets and systems.

In the context of mobility, both green IS and energy informatics have contributed to EV
charging infrastructure development. Examples include optimised load balancing and renew-
able integration into charging networks [12], as well as Vehicle-to-Grid (V2G) approaches
that mitigate peaks through predictive algorithms and dynamic pricing [29]. Since the major-
ity of these studies focus on network operators or electricity market agents, their perspective
tends to remain at the systemic level, with an emphasis on market and grid implications.
User-oriented approaches have improved the EV charging experience, with tools for intelli-

gent navigation to available charging stations, real-time availability updates, and dynamic
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pricing to promote energy-efficient charging behaviours [30, BI]. Despite these advances,
little user-oriented guidance exists on how to plan and operate EV workplace charging in-
frastructure using firm-specific data - a key enabler for scaling EV adoption and reducing

emissions in the mobility sector [2} [32].

2.2. Smart EV charging

Smart charging is central to sustainable mobility systems. It involves managing EV
charging loads according to predefined objectives, such as minimising peak demand, re-
ducing costs, or lowering carbon emissions [33]. To this end, Zheng et al. [34] provide a
review on common objective functions and modelling approaches in this field. In workplace
contexts, algorithms have been developed to jointly optimise infrastructure sizing and the
assignment of vehicles to charging spots, see e.g., [3]. When combined with on-site solar
generation, real-time energy management systems can produce optimal charging schedules,
thereby increasing self-sufficiency and lowering operational costs [35]. Bidirectional charging
(V2G) provides an additional benefit by drawing energy from EV batteries during electricity
demand peaks at industrial sites [36]. While these studies provide valuable insights, they
are not easily transferable across workplace settings. Much of the literature frames work-
place charging primarily as an engineering problem, focusing on energy or cost optimisation
[37]. Less attention is given to the organisational decision-making processes that guide in-
frastructure deployment and management [10]. This gap highlights a practical challenge for
operators: evaluating the strategic trade-offs among different charging strategies. Address-
ing this requires integrated DSSs that combine robust optimisation models with support for

organisational decision-making.

2.3. Decision support systems for data-driven modelling of power loads
DSSs have a long history in sustainability and energy management research, especially
within the green IS and energy informatics communities [I7]. They frequently use advanced

analytical methods such as Artificial Intelligence (AI)-driven forecasting, simulation, and
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optimisation to support operational decisions about electricity demand [I8 [12]. Examples
include Gust et al. [38], who combine predictive analytics and optimisation for grid planning,
or Schuller et al. [39], who benchmark smart charging and V2G strategies while accounting
for driving patterns, battery degradation, and energy price variability, thus emphasising the
complexity and practical relevance of detailed economic modelling within DSS frameworks.
Despite these advances, most DSSs either focus on technical optimisation alone or rely on
generic datasets. Few integrate detailed, data-driven load simulation with firm-specific de-
cision contexts. Recent work in green IS has explicitly called for such integration [17, [18§].
Our study responds to this gap by contributing a DSS that combines technical modelling
with managerial decision processes. By embedding firm-specific data and making trade-
offs explicit, we extend DSS design beyond optimisation and toward broader organisational

sustainability transitions.

3. Methodology

3.1. Research design

We applied a Design Science Research (DSR) approach, which “creates and evaluates
IT artefacts intended to solve identified organisational problems” [40, p. 77]. Our process
followed five steps: (i) problem identification, (ii) definition of objectives, (iii) design and
development of the artefact, (iv) demonstration and rigorous evaluation, and (v) communi-
cation of design knowledge. Three design cycles (cf. Figure|l]) allowed us to iteratively refine
the artefact. Unlike the six-step process by Peffers et al. [19], we report on steps 4 and 5
together, as previous studies have done [41].

As outlined above, we identified a central organisational problem in line with previ-
ous literature [10]: executives often lack analytical foresight about the grid impacts of EV
workplace charging. In particular, they have limited awareness of the benefits of managing
charging points through smart charging versus leaving charging uncontrolled [10], particu-

larly regarding the quantification of their impacts. While uncontrolled charging typically
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Figure 1: Overview of our DSR process; adapted from Peffers et al. [I9] and Schoormann et al. [41]

begins immediately upon plug-in as employees arrive at the workplace, potentially leading
to significant peak demand spikes at the aggregate level when large numbers of EVs require
simultaneous charging, smart charging allows for distributed load management aligned with
pre-defined objectives, such as minimising peak demand, reducing charging costs, or low-
ering emissions [33]. The choice among these smart charging strategies depends upon the
local decision context, for instance, reducing peak demand to accommodate limited on-site
grid capacity, or addressing financial considerations (charging costs) and environmental or
regulatory compliance requirements (carbon emissions minimisation) [34]. A mathematical
formulation of the optimisation model can be found in Tables 4-5 of [42] and is explained in
in more detail. To address this real-world challenge, we designed a generic, open-source
DSS prototype that enables firms to model charging strategies with their own data. After
identifying the problem (step 1), we defined objectives (step 2), designed a prototype (step
3), and demonstrated and evaluated it with firms in our sample (steps 4-5). Note that we

use the data collected during steps 2-5 comprehensively across design cycles 1-3.
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3.2. Sampling approach

We recruited eight firms for the demonstration and evaluation of our DSS. These firms,
introduced in Table [T in full detail based on decision-critical data, form our sample. We do
not treat them as ‘case studies’ in the conventional sense. Instead, we used their contextual

and load profile data to develop and parametrise the DSS and to demonstrate its usability.
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Table 1: Sample overview, including firm-specific modelling inputs. IDs are used as anonymous identifiers.

DC ! ID Sector Electricity consumption (p.a.) Main demand source Work shifts # Cars EV rate (status quo) Type of analysis
AM (06:00-14:00) 90

2 1 Media & publishing 20,000 MWh Printing machinery PM (14:00-22:00) 80 5% Firm-specific data
Night (22:00-06:00) 60

2 2 Office supplies 232 MWh Office buildings Office staff (08:00-16:00) 50 25% Firm-specific data

2 3 Healthcare 6,137 MWh Hospital operations Fleet (16:00-07:30) 50 10% Firm-specific data
AM (06:00-14:00) 100
PM (14:00-22:00) 150

2 4 Pharma 6,000 MWh Drug manufacturing 10% Firm-specific data
Night (22:00-06:00) 80
Office staff (08:00-16:00) 300
AM (06:00-14:00) 250
PM (14:00-22:00) 175

3 5  Paper production 197,290 MWh Production machinery 5% Firm-specific data
Night (22:00-06:00) 80
Office staff (08:00-16:00) 60
AM (06:00-14:00) 100

3 6  Manufacturing 4,000 MWh Compressed air generation PM (14:00-22:00) 70 30% Firm-specific data
Office staff (08:00-16:00) 100

3 7  Building materials 2,000 MWh Office buildings, HVAC Office staff (07:30-17:00) 500 12% Standard load profile

AM (06:00-14:00) 170

3 8  Energy infrastructure 1,724 MWh Production machinery PM (14:00-22:00) 30 3% Firm-specific data
Office staff (07:00-16:00) 140

L DC = Design cycle
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We selected firms according to three criteria. First, they were medium- to large-sized
organisations with extensive parking spaces (>40) and concrete plans to install EV charg-
ing. The sector each firm operates in and the respective energy intensity of its underlying
business processes can vary from small-scale, energy-efficient office operations to large-scale,
manufacturing-heavy and energy-intensive environments operating on multiple work shift
schedules daily (cf. Table . Second, we targeted firms with limited in-house energy man-
agement capabilities, indicated by the absence of dedicated procurement departments. Third,
we restricted the sample to Germany, where the EU’s Directive 2018 /844 on the energy per-
formance of buildings (GEIG) has applied since January 2025 [8] (cf. §IJ).

Table [I] summarises the eight sample firms, including their sectors, annual electricity
consumption, and main sources of demand. While we developed a first version of the tool,
i.e., design cycle 1, based on prior literature, such as [10], we evenly distributed the firms
between design cycles 2 and 3. Companies 1-4 (IDs) evaluated the initial version of our
artefact (cf. Figure 6 of [42]) in design cycle 2, while companies 5-8 (IDs) assessed the
enhanced version (cf. Figure 7 of [42]) in design cycle 3. We sourced participating firms
through three channels: (i) digital flyer advertisements on LinkedIn, (ii) targeted outreach

via cold emailing, and (iii) the authors’ professional networks.

3.3. Data collection and analysis

We used a mixed-methods interview design with both qualitative and quantitative com-
ponents. For each firm, we conducted two semi-structured interviews using Microsoft Teams.
The interview guides are listed in Tables 6-7 of [42]. The first interview explored the firm’s
current practices and plans for EV workplace charging, energy management, and procure-
ment, and included a short demonstration of the DSS. Between interviews, firms were asked
to provide contextual data (Table which parametrised the DSS. The second interview
demonstrated the DSS using the firm’s own data, presented analytical insights, and col-
lected feedback on functionality, usability, and perceived usefulness. At the end, participants

completed the SUS questionnaire [43] to measure perceived usability.

11



Table 2: Data collection timeline and interviewees’ role descriptions, grouped by design cycles

Date of interviews

DC ! ID Role of interview partner(s) 2 Interview 1 Interview 2
Duration (mm:ss) Duration (mm:ss)
a: Corporate sustainability 26.11.2024 04.12.2024
2 1
b: Finance/energy procurement (45:39) (49:54)
10.12.2024 14.01.2025
2 2 a: Head of facility management
(28:29) (42:33)
a: Strategic purchasing 28.11.2024 17.01.2025
2 3
b: Fleet management (31:01) (39:06)
a: Energy provisioning (engineering) 22.01.2025 21.02.2025
2 4
b: Head of corporate responsibility (36:22) (46:39)
a: FExecutive assistant CEO 05.03.2025 30.04.2025
3 5
b: Energy portfolio manager (36:41) (49:07)
a: Sustainability manager
05.03.2025 06.05.2025
3 6 b: Project manager (engineering)
(38:17) (40:39)
c: Team lead maintenance
11.04.2025 28.04.2025
3 7 a: Sustainability manager
(47:05) (29:11)
30.04.2025 07.05.2025
3 8 a: Engineer sustainability manager
(18:55) (36:13)

1 DC = Design cycle;
2 Note that interviews were attended by either one, two, or three company representa-
tives, where letters (a), (b), and (c) specify each individual’s role.

12
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In total, we conducted interviews with 14 practitioners from the eight firms. Participants
represented roles across sustainability, energy, facilities, fleet, and finance. This variety
ensured that our evaluation reflected diverse organisational perspectives. Table [2| provides
more contextual information pertaining interviewees’ roles within the firm, and the date and
duration of each interview. Moreover, Figure [2| depicts the entire data collection process for

each participating firm.

1 | Interview #1 3 2 | Datainput survey DA 3 | Interview #2 P8 4 | SUS questionnaire

Themes covered: Data input regarding: Topics covered: Quantitative ex-post
Sustainability strategy, Work-shift patterns, incl. no. General impression evaluation: points covered:
planning of EV charging of parked employee cars, (functionality), perceived perceived usefulness & ease
infrastructure, general current %-EV share, power usefulness & ease of use, of use, functionality, degree
decision environment load profile decision-support relevance of complexity

Figure 2: Summary of data collection points for each participating firm.

For qualitative analysis, we applied a deductive coding approach, i.e., our coding cate-
gories were defined in advance, based on established DSSs and IS evaluation dimensions. In
our study, we structured the coding scheme around four categories: (i) Perceived usefulness,
(ii) usability and ease of use, (iii) organisational value, and (iv) suggestions for improvement.
These categories align closely with prior frameworks. Perceived usefulness corresponds to
Davis’ [44] construct of usefulness in the Technology Acceptance Model. Usability and ease
of use map onto system quality and user satisfaction, as outlined in the DeLone & McLean
[45] IS Success Model and often assessed through usability instruments such as the SUS [46]
or user satisfaction surveys [47]. Organisational value reflects the dimension of net benefits
in the DeLone & McLean [45] model, capturing how systems contribute to broader organi-
sational performance and decision-making. Finally, suggestions for improvement serve as an
open category to capture user-driven recommendations not covered by existing frameworks,

ensuring that our analysis remained responsive to context-specific insights.
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4. Design and development of the artefact

4.1. Design cycle 1

In the first design cycle, we focused on building the optimisation core of the DSS. We
implemented a mixed-integer linear programming model for smart charging, drawing on the
formulations of Ioakimidis et al. [36] and Zheng et al. [34]. The model determines optimal
charging schedules by minimising one of three objectives - peak demand, electricity costs, or
carbon emissions - subject to physical and operational constraints such as battery capacities,
charging power limits, arrival and departure times, and exogenous load profiles.

Our modelling framework follows the approach introduced by Seger et al. [10], to which
we refer for details on the full optimisation problem and solution method. In our imple-
mentation, we coded the optimisation algorithms in Python and connected them to the
DSS interface through a modular back-end (cf. design cycles 2-3). This allows users to run
firm-specific simulations based on their own data. The full model formulation, including
objective functions and constraint sets, is provided in Tables 6-7 of [42] for transparency
and reproducibility. By concluding design cycle 1, we had established a technically validated
optimisation module that served as the engine of the DSS, forming the basis for subsequent
cycles of real-world application and user evaluation (design cycles 2-3).

To support early design decisions, we created a high-fidelity mock-up of the user interface
in Figma. This is a widely used approach to save valuable resources (time, development costs
etc.) within Design Science and user-centred design [48]. The mock-up defined the layout and
components of the dashboard, including a three-column structure with a collapsible sidebar
for data input, a central panel for line graphs, and a right-hand panel for key metrics. This

static prototype (cf. Figure 6 of [42]) served as the basis for subsequent development.

4.2. Design cycle 2

In the second cycle, we translated the static Figma prototype into a functional web

application (cf. Figure 7 of [42]). We used the open-source toolkit Streamlit, which offers
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Python packages for building interactive applications without resource-intensive front-end
programming. The application interface consists of three main parts. First, a sidebar collects
firm-specific input such as (a) number and timing of work shifts, (b) number of employee
cars per shift, (¢) EV battery size distributions, (d) electricity load profiles (uploaded as
xls or .csv files), and (e) analysis preferences (date, solver, charger power). While these
exogenous input parameters are held constant, the decision maker gets to choose the EV
electrification rate freely between 0% (no EV present) to 100% (fully electrified car fleet), in
alignment with different future electrification scenarios. Second, the main panel visualises
electricity demand profiles under three charging strategies: peak minimisation & valley filling
(PM-VF) (top row), charging cost minimisation (CCM) (middle row), and carbon emission
minimisation (CEM) (bottom row; cut off in the screenshot in Figure 7 of [42]). Each plot
compares uncontrolled charging with the corresponding smart charging strategy. Third, bar
charts display the Value of Smart Charging (VoSC), defined as the relative change (%A)
between smart- and uncontrolled charging for each key metric (i) maximum peak, (ii) total
charging costs, or (iii) carbon emissions. The system updates results in real time when input

parameters are changed.

4.8. Design cycle 3

After demonstrating the first functional prototype with firms in our sample (design cycle
2, cf. , we obtained valuable user feedback with actionable advice on what should be
improved within design cycle 3. We identified 16 feature requests which we subsequently
clustered into three priority levels (high, medium, low). We categorised feature requests as
‘high’ based on (i) relevance (certain features have been requested several times throughout
interviews), (ii) technical feasibility, and (iii) resource availability (e.g. time) to develop the
request. In the third design cycle, we implemented the following high-priority improvements:
a multi-period analysis allowing users to view results daily, weekly, or monthly, with shaded
confidence intervals indicating variability; external data integration enabling automated re-

trieval of German electricity price data from entso-e’s transparency platform (bidding zone

15
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DE-LU) [49] and grid-carbon intensity data from electricity maps [50]; in-app explanations

providing contextual tooltips to improve self-efficacy and understanding; graph enlargement

and export functions for reporting purposes; an option to display the VoSC in absolute rather

than relative terms; and improved visual clarity through tick boxes allowing selective display

of external electricity price and carbon intensity curves.

Remaining medium- and low-priority features are documented in §A.5 of [42]. These

relate to (a) tariff-specific grid carbon intensity measures, (b) tariff-specific electricity price

data (fixed/dynamic), (c¢) data-driven forecasting of firm’s electricity load profile, (d) firm-

specific peak pricing, (e) analytical specifications (COy emissions: accounted vs. actually

emitted), and (f) advanced analytics for tracking of seasonal effects. The updated and final

DSS is shown in Figure
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Figure 3: Updated web application post implementation of interviewees’ feedback (design cycle 3)
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We evaluated the impact of these feature changes on users’ perceived usefulness of the
system by repeating qualitative- (semi-structured interviews) and quantitative (SUS ques-
tionnaire) data collection with four additional firms (cf. as part of design cycle 3. These
findings are reported in more detail in and §A.5 of [42].

5. Demonstration, evaluation, and findings

5.1. Application of our artefact

We demonstrated the DSS using firm-specific empirical data rather than generic or syn-
thetic inputs. This approach increased the external validity of our results and gave inter-
viewees a strong incentive to participate. Using their own data also made the simulation
outputs more meaningful and easier to relate to.

Each firm in our sample provided information on its annual electricity consumption, main
demand sources, work shift schedules, number of employee cars, and current EV adoption
rates. We used these data, summarised in Table [I} to parametrise the DSS. Further con-
textual information is provided in Table 13 of [42] regarding (i) high-level characteristics
of the firm’s electricity load profile, (ii) procurement strategy, (iii) expected future electric-
ity consumption, and (iv) anticipated challenges in managing electricity demand. One firm
(ID 7) was unable to share detailed load profiles; in this case, we relied on a standard load
profile. For the remaining firms, we simulated electricity load profiles under three charging
strategies - peak minimisation & valley filling (PM-VF), charging cost minimisation (CCM),
and carbon emission minimisation (CEM), in response to varying EV adoption rates [%)].
For each scenario, the DSS also calculated the VoSC, expressed as the relative change |%A]
in peak demand, charging costs, or carbon emissions compared to uncontrolled charging.

Figure [4] presents the savings potential (‘VoSC’ [%A]) from smart charging strategies,
exemplarily for firms 5 and 6 (ID). It includes results for all three charging strategies (PM-
VF, CCM, CEM). The boxplots, which entail 28 single-day model results from February

2024 /25, show how the savings potential changes as the rate of EV adoption [%] increases.
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VoSC |%A]| model results of all firms (IDs 1-8) are provided in Figure 8 of [42]. In
general, we find three key insights: First, if firms opt for peak minimal charging (PM-VF),
the graphs show that this charging strategy yields the lowest overall peaks across the sample
(IDs), with higher savings potential as the EV rate increases. Second, contrary to peak
minimal charging, if optimising for charging costs (CCM) or carbon emissions (CEM), the
achieved savings potential remains relatively constant, independent of the EV adoption rate.
Third, and lastly, when comparing results across firms (IDs 1-8), we observe substantial
differences in variability, measured by the boxplots’ whisker lengths, for certain key metrics
(e.g. cf. Figure[dt PM-VF (top row): charging costs, ID 5 vs. ID 6). This suggests that the

model results for each firm are highly context-dependent.

5.2. Qualitative findings: Managerial insights from interviews

The purpose of this study is not only to evaluate the usability of the developed artefact
(cf. §5.3)), but also to examine how the DSS influences executives’ understanding, dialogue,
and capacity for long-term planning regarding EV workplace infrastructure. To this end, we
conducted interviews with 14 practitioners from 8 firms, each holding managerial responsibil-
ities across sustainability, energy, facilities, fleet, and finance departments. In the following,
we present our findings as six themes that illustrate how the DSS shapes decision-making.

Surfacing and managing trade-offs: Our findings indicate that the DSS enables ex-
ecutives to explicitly weigh costs, peak load, and emissions, thereby moving beyond intuition
toward structured comparisons. This is illustrated by interviewee 2a, who noted feeling em-
powered to compare quantitative trade-offs across alternatives: “Just being able to say: ‘OK,
what alternatives do I have? Do I want to reduce costs or do I want to reduce CO2?’ And
that really does make a difference.” [ID: 2a]. He further emphasised the value of prioritisa-
tion and data-driven decision-making: “To set priorities and (...) start working with data
in the company instead of relying on gut feelings” [ID: 2a], and highlighted the efficiency
gains: “It’s just nice to be able to argue using valid data, (...) something I’d otherwise have

to gather myself with a lot of effort.” |[ID: 2al. Likewise, respondent 6a stressed the practical
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usefulness of the web application “because it shows how you can weigh different factors” [ID:
6a], which, in turn, “help[s/ to make a more informed decision than one might otherwise have
made” [ID: 6a]. The role of data-driven guidance is also evident in interviewee 5b’s reflec-
tions on determining the appropriate scale of charging infrastructure: “What definitely helps
1s getting guidance on: How large should I dimension my charging infrastructure? What
do I need to consider, what kind of costs and savings are actually involved if I incorporate
different automation features?” [ID: 5b|. He also stressed the importance of integrating
cost considerations with smart charging strategies: “What I find especially interesting is the
combination of charging cost optimisation with smart charging, because (...) you can really
see the impact of trying to control your demand based on cost, rather than just managing
everything purely based on demand.” [ID: 5b|. Collectively, these insights highlight the DSS’s
role in revealing decision tensions and supporting multi-objective reasoning.

Changing mental models and strategic framing: The analysis also reveals that the
DSS encourages a shift in perspective from operational concerns toward strategic planning
and investment. Interviewee 4a underscored the future relevance of data-driven tools, stating:
“I think a tool like this is incredibly important for the future, especially because it helps you
see what’s going on and how things can be optimised.” |ID: 4a|. Adding to this, interviewee
5b perceived the tool to “be helpful as one element in discussing an investment decision”
[ID: 5b]. Respondent 8a expressed strong interest in integrating such a decision-enhancing
tool into strategic planning, viewing it as a way to strengthen the currently rather limited
planning practices: “At the moment, we really don’t have anything in our discussions - except
maybe what we calculate ourselves somehow. But a tool like this would definitely be a huge
support, especially if it provides real values based on company-specific data.” [ID: 8al. In
summary, our DSS fosters foresight planning and strategic framing, situating EV charging
within broader organisational transitions.

Facilitating cross-departmental dialogue: Feedback from the interviews suggests

that the DSS empowers non-specialists to contribute to discussions while fostering a shared
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understanding across departments. This is exemplified by participant 2a, who expressed
increased confidence in engaging with broader decision-making forums: “I would now imme-
diately feel able to join a larger meeting, make suggestions, (...) being able to say: Okay,
what happens in scenario X or Y? How does it behave there?” [ID: 2a|. Interviewee 6a, a
Sustainability Manager, reinforced this point by highlighting the value of visualisation for
making complex issues more accessible: “A lot of what you usually try to explain just in
words is shown visually here - and that makes it memorable. (...) It’s just an excellent basis
for discussion, and everyone would approach it from their own perspective - and I believe
that would really help with making a decision.” [ID: 6a]. She further noted its potential in
executive-level discussions: “I could definitely imagine that if we were to discuss this with
our commercial director, it would be an exciting foundation to build on.” [ID: 6al. Taken
together, these accounts highlight how the DSS functions as a boundary object, supporting
collaboration across sustainability, energy, facilities, fleet, and finance functions.

Perceived usability and adoption potential: Usability, which is further examined
in the following section (§5.3) through quantitative results from the SUS questionnaire, also
emerged as a central theme in the qualitative interviews. Simplicity, clarity, and visual design
were consistently noted as factors that build user confidence and reduce barriers to adoption.
For example, interviewees described the DSS as ‘“kept pretty simple” [ID: 1b|, making it
“definitely user-friendly and dynamic” [ID: 1b|, with “three clear goals and graphics that are
self-explanatory” [ID: 2al. Interviewee 7a emphasised the appeal of a streamlined interface,
noting that the web application “is clearly laid out, attractive to use, and not overloaded”
[ID: 7a]. Visual aspects were further underlined by interviewee 8a, who remarked: “I'm (...)
a very visual person, and I like that there are lots of charts.” [ID: 8a]. Overall, the interviews
point to a strong perception of usability, reinforced by the SUS score of 81.8 (§5.3), which
indicates high adoption potential at the organisational level.

External validation and credibility: Executives particularly valued instances where

the DSS outputs aligned with their own systems and data, as this alignment reinforced trust
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in the tool. Interviewee 4a illustrated this point, noting: “I already like that the red curve
reflects reality - that’s a good start, because I checked in my own program in parallel, and
it looks similar.” [ID: 4a|. He further added: “It’s great that the theory already reflects the
reality, I really like that.” [ID: 4a|. These reflections underscore that credibility of model
outputs is a prerequisite for adoption in strategic decision-making contexts.

Overwhelm and complexity concerns: Although most respondents described the
DSS as simple and easy to use, several interviewees raised concerns about potential informa-
tion overload, highlighting the importance of maintaining simplicity. Interviewee 7a noted
that “the more overloaded it [the DSS] is, the less people will use it.” [ID: Ta|. Similarly,
respondent Hb cautioned against excessive complexity, stating: “I can’t use something that
suddenly overwhelms me with so much information that I can’t see the forest for the trees.
I actually need to see the specific information that’s supposed to come through - clearly and
deliberately.” [ID: 5b|. These perspectives show that adoption hinges on striking a balance
between analytic richness and cognitive simplicity, a well-known challenge in DSS design.

Together, the themes demonstrate how the DSS not only optimises EV workplace charg-
ing technically, but also reveals trade-offs between competing metrics, reframes decision
problems strategically, facilitates cross-departmental dialogue, and builds trust through us-
ability and validation, while balancing analytic richness against risks of overload. These are
core DSS contributions that extend beyond the energy domain into the broader challenge of
supporting organisational sustainability transitions. The full list of interview quotes can be

accessed in §A.5 of [42].

5.3. Quantitative findings: System Usability Scale (SUS) questionnaire

We assessed the DSS’s usability with the SUS questionnaire [46]. SUS consists of ten
standardised statements, alternating between positive and negative wording, each rated on
a five-point Likert scale from ‘strongly disagree’ (1) to ‘strongly agree’ (5) [51]. Scores are
calculated on a 0-100 scale, where values above 71 indicate good usability and values above

81 are considered ‘excellent’. The formal mathematical derivation to obtain the SUS score is
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included in §A.2 of [42]. Moreover, an overview of the ten SUS items can be found in Table
14 of [42], in line with the individual rating from each respondent, differentiated by design
cycles 2 and 3. We received 11 completed questionnaires: six from design cycle 2 and five
from design cycle 3. The average SUS score across all responses was 81.8, which falls into
the ‘excellent’ category. By comparison, the average SUS score for web-based user interfaces
is 68 [52]. This suggests that our DSS performs well above typical benchmarks. Looking
at the design cycles separately, cycle 2 achieved an average SUS of 87.1 (‘best imaginable’).

Cycle 3 averaged 75.5, which is considered ‘good’.
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Figure 5: Distribution of participants’ responses in each Likert category, from ‘strongly disagree’ (dark red)

to ‘strongly agree’ (dark blue). Results combine responses from design cycle 2 (n = 6) and 3 (n = 5).

Figure [ illustrates the distribution of responses for each of the ten SUS items across
both cycles. The combined results indicate strong usability ratings, reflecting positive user
perceptions regarding ease of use (Q3), simplicity (Q2), integration of system functions (Q5),
consistency (Q6), and overall willingness to frequently use the system (Q1). Respondents
also clearly indicated that the system does not require extensive initial learning (Q10) or

technical support (Q4), nor did they perceive it as cumbersome (Q8). Furthermore, par-
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ticipants generally felt confident using the system (Q9) and believed most people would
learn the system quickly (Q7), although minor neutral responses suggest potential for fur-
ther enhancing user guidance. In sum, the quantitative results align with our qualitative
findings: users perceived the DSS as clear, practical, and highly usable. The SUS score of
81.8 confirms its strong adoption potential in organisational settings. Overall, the evaluation
of our artefact illustrates the high real-world applicability and strong usability of our web

application, which serves as a DSS for business executives.

6. Discussion and contribution

Investing in EV workplace charging and electrifying company fleets can deliver substantial
benefits. Prior studies estimate annual savings, per firm, of up to €100k and emission
reductions of around 250 tC'O, [4]. Our findings build on this evidence by showing how such
benefits can be contextualised, quantified, and operationalised through a DSS.

From a theoretical perspective, our work follows an ‘exaptation’ strategy within the
Knowledge Innovation Matriz [53]. We repurpose existing optimisation algorithms for the
dedicated application of workplace charging. In doing so, we instantiate a DSS artefact tai-
lored to a specific organisational context. Our solution also classifies as ‘Decision-support sys-
tem’, where humans (business executives) and machines (optimisation algorithms) “interact
in mutually supportive patterns of iterative sequential or parallel activities”, thus augment-
ing human cognitive abilities [54, p. 2|. Concerning DSR contributions, our web application
is a situated implementation of an artefact, tailored to the decision context of EV work-
place charging. Hence, we argue that our software instantiation contributes to DSR through
practical, highly specific knowledge at ‘Level 1’, as classified by Gregor and Hevner [55].

Responding to recent scholarly calls [17, [I8], the novelty of our work lies in its user-
centred approach to solving a real-world organisational problem within the broader challenge
of the sustainable mobility transition. Our DSS empowers business executives to make

informed decisions about planning and operating EV workplace charging infrastructure. We
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demonstrated and rigorously evaluated the system using real-world electricity consumption
data from our sample firms and assessing usability with the SUS questionnaire. We selected
DSR as the guiding paradigm because of its iterative and practice-oriented nature. This
approach enabled us to continuously update and improve the prototype based on participant

feedback across three design cycles.

The resulting open-source web application, accessible at https://ev-workplace-charging.

streamlit.app/, provides detailed insights into how different charging strategies (PM-VF,
CCM, CEM) affect peak demand, charging costs, and carbon emissions. These simulations
explicitly account for varying employee EV adoption rates (15-100%) and are tailored to
each site’s unique load profile and workplace context. The outputs deliver decision-critical
information, enabling executives from sustainability, energy, facilities, fleet, and finance to
understand and navigate trade-offs that were previously implicit. Consequently, we argue
that the DSS facilitates informed consensus-building around optimal charge point operations.

We compared our artefact to prior energy-related DSSs (cf. Table . Previous systems
often rely on generic or grid-level datasets, focus on a single optimisation objective, and
are primarily designed for technical experts [56) 57, [58]. By contrast, our DSS integrates
firm-specific data by embedding contextual load profiles into the analysis, represents trade-
offs explicitly by quantifying costs, peak demand, and emissions side by side, and targets
organisational decision makers, thereby fostering dialogue across sustainability, facilities,
finance, and fleet management. This combination extends DSS design beyond technical
optimisation. It shows how firm-specific modelling and trade-off representation can support
sustainability transitions at the organisational level.

Firms can derive several practical implications from our study. First, when evaluating
the results of each charging strategy in isolation, we find that, on average, each strategy
achieves its intended outcome. For example, PM-VF consistently produces the lowest peaks,
while CCM leads to the lowest charging costs (cf. Figure . This finding demonstrates the

external validity of our model, as each optimisation strategy delivers what it was designed to
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achieve. Second, however, our results also show that optimising for the overall lowest charging
costs (CCM) or the lowest carbon emissions (CEM) comes at a trade-off. Specifically, these
strategies incur substantially higher peak loads, an effect that becomes more pronounced as
EV adoption increases (cf. Figure : second and third row). Third, when comparing results
across firms (cf. Figure , we observe substantial contextual variability. This is evident
in the different lengths of the whiskers in the boxplots, which capture the variability of the
results across individual model runs. These differences underline the importance of firm-
specific data and analysis, and they demonstrate the added value of our web application as a
tool tailored to each organisational context. In addition, from a DSS evaluation perspective,
the combined qualitative and quantitative results of our study provide tangible evidence
of the system’s usability and practical value for corporate decision makers. Simplicity and
clarity emerge as key success factors for adoption, as they lower barriers for non-technical
users and increase confidence in applying the system to strategic decision-making.

For policymakers, our study highlights the importance of managing EV workplace charg-
ing loads in a comprehensive manner by using highly granular DSSs that incorporate firm-
specific parameters. Across most firms in our sample, the DSS simulations indicate an
average carbon emissions savings potential of approximately 20% (cf. Figure 8 of [42]: sec-
ond row). This demonstrates that firm-level optimisation measures are both feasible and
actionable, and that they can significantly enhance demand-side flexibility in the electric-
ity system. Such flexibility is widely recognised as a critical element in achieving the EU’s
net-zero emissions target by 2050. While the EU-wide Energy Performance of Buildings
Directive (EPBD) [59], which has been transposed into German law through GEIG [§], rep-
resents an important first step towards scaling workplace charging infrastructure, we argue
that additional regulatory frameworks are needed to incentivise the uptake of smart charging
algorithms.

Lastly, in terms of methodological procedure, it is worthwhile noting that we ended the

DSR process after three design cycles due to SUS score saturation (final score: 81.8).
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Table 3: Comparison of existing energy-related DSSs and our DSS contribution.

Dimension

Prior energy-related DSSs

Our DSS contribution

Data scope

Decision

framing

User

orientation

System design

Contribution

to DSS field

Rely on generic scenarios,
grid-level datasets, or
engineering assumptions [56]
Emphasise single-objective
optimisation (e.g., cost, peak
demand, or emissions
separately) [57]

Designed primarily for
technical experts (e.g., grid
operators, energy engineers)
58]

Often research prototypes
with limited validation in

practice [60]

Extend modelling capabilities

in energy informatics [39]

Integrates firm-specific electricity
load data and workplace context to
deliver tailored insights

Makes multi-objective trade-offs
explicit by quantifying costs, peak
demand, and carbon emissions
simultaneously

Designed for organisational decision
makers (sustainability, energy,
facilities, fleet, finance) to enable
cross-departmental dialogue
Open-source, interactive web
application, validated with eight
firms; achieves high usability (SUS
81.8 = ‘excellent’)

Extend DSS design for sustainability
transitions by embedding
firm-specific data, trade-off
representation, and collaborative

decision support
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7. Conclusion and outlook

Data-driven DSSs are becoming increasingly important tools for facilitating the electrifi-
cation of mobility and broader organisational sustainability transitions (cf. §2.3). Although
many business executives recognise the complexity of this transition, particularly in relation
to workplace charging (cf. , our findings show that most firms lack the granular insights
needed to anticipate how this shift will unfold in practice. The web application we devel-
oped, demonstrated, and evaluated with real-world data is designed to address this gap by
providing a dedicated environment in which firms can simulate EV charging strategies based
on their own data and parameters. By making trade-offs explicit and easy to understand, the
system supports decision makers in navigating a challenging and highly dynamic landscape.

At the same time, we acknowledge several limitations of our study. First, the DSS cur-
rently produces static, non-probabilistic forecasts based on historical load profiles, which
restricts its predictive capacity. Second, the current version of our DSS does not yet accom-
modate complex, firm-specific tariff structures. Third, our evaluation was based on a sample
of eight firms, all located in Germany. This limits the generalisability of the findings to other
countries or sectors. These limitations also point to directions for future research and devel-
opment. Subsequent iterations of the DSS could integrate stochastic time-series forecasting
methods to enhance predictive power. Emerging Al models, such as TimeGPT, could pro-
vide off-the-shelf solutions for this task. Future studies could also extend the functionality of
the DSS to incorporate more complex tariff structures and the integration of on-site renew-
able generation. Moreover, replication of the study in different geographical and industrial
contexts would be valuable in assessing the system’s robustness and transferability. Looking
further ahead, the DSS framework could be adapted to manage other forms of distributed
energy resources, such as depot charging for delivery fleets or heavy-duty vehicles, as well as
the operation of stationary battery energy storage systems.

In conclusion, our DSS contributes a practical, user-centred solution to a pressing organ-

isational and societal challenge. It enables firms to better plan and operate EV workplace
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charging infrastructure while explicitly surfacing the trade-offs between peak demand, costs,
and emissions. By doing so, it not only advances DSS research but also offers policymakers

and practitioners an actionable pathway to support the sustainable mobility transition.
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