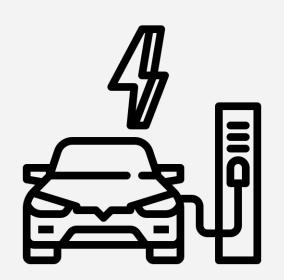
From Data to Decision:

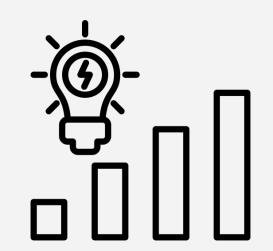
Optimising Electric Vehicle Workplace Charging

Marcel Seger 1*, Christian Brand 1, Christoph Clement 2, Marc-Fabian Körner 3, Charlie Wilson 1

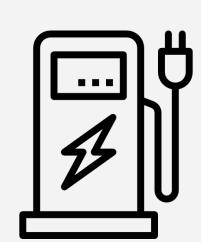
- ¹ Environmental Change Institute, School of Geography and the Environment, University of Oxford, UK
- ² Center for Artificial Intelligence in Medicine, University of Bern, CH
- ³ FIM Research Center, University of Bayreuth, DE
- *corresponding author: marcel.seger@eci.ox.ac.uk



1


Background & Motivation

Problem context: Electrification of transport creates need for widespread deployment of electric vehicle (EV) workplace chargers (WPC)


8 million EVs

Annual sales volume by 2030 [+400% (2024)] [1]

82 GWh

+300% electricity demand for EV charging by 2030 [1]

Workplace chargers

+500% forecasted for UK / +200% in DE by 2030 [2,3]

Scope 3 emissions

Firms' reporting obligation of employee commute [4]

Decision support system

Identified need for data-driven decision support to plan and operate EV WPCs [5]

7

Research Design

Design Science Research Process

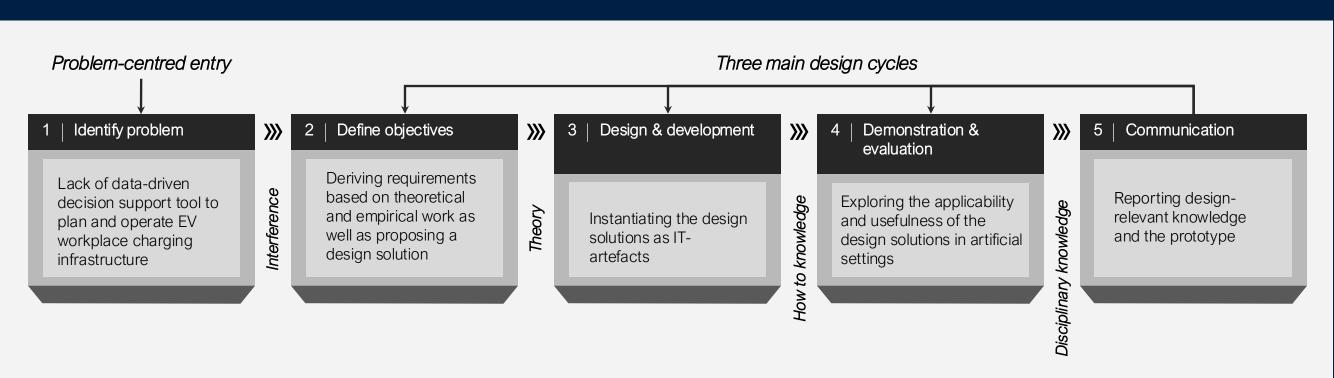


Figure 1. Adopted Design Science Research process with three design cycles. [6]

Research Question: How can a decision support system (DSS) tailored to firm-specific electricity data help executives evaluate trade-offs between peak demand, charging costs, and carbon emissions?

3

Web Application

Development of interactive open-source web application (IT artefact)

[1] International Energy Agency (IEA) (2025). Global EV Data Explorer.

GUROBI OPTIMIZATION

Streamlit

ChargeUK (2024). Powering ahead to 2030: Current and Future Charge Point Availability in the UK. NOW GmbH (2024). Ladeinfrastruktur nach 2025/2030. Szenarien für den Markthochlauf (Neuauflage).

available open-source:

github.com/segermarcel

European Union (2024). Corporate Sustainability Reporting Directive 2022/2464.

4

Demonstration, evaluation, and findings

Managerial insights from interviewing business executives from eight firms.

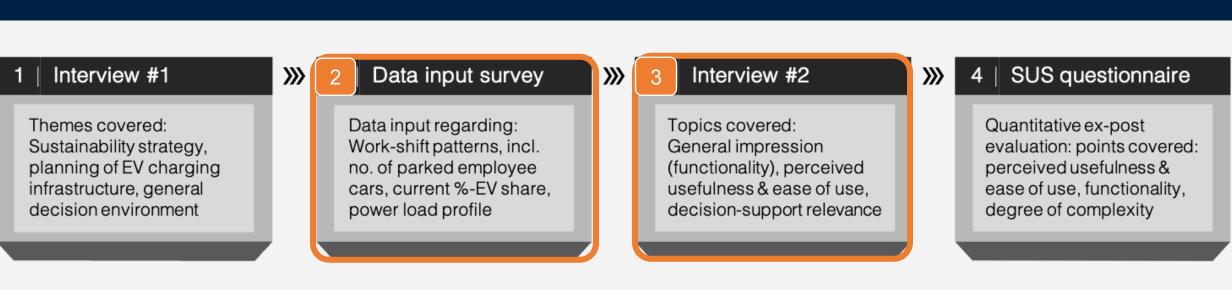


Figure 3. Summary of data collection points for each participating firm.

DC	ID	Sector	Electricity consumption (p.a.)	Main demand source	Work shifts	# Cars	EV rate (status quo)	Type of analysis
2		Media & publishing	20,000 MWh	Printing machinery	AM (06:00-14:00)	90	5%	Firm-specific data
	1				PM (14:00–22:00)	80		
					Night (22:00–06:00)	60		
2	2	Office supplies	232 MWh	Office buildings	Office staff (08:00–16:00)	50	25%	Firm-specific data
2	3	Healthcare	6,137 MWh	Hospital operations	Fleet (16:00-07:30)	50	10%	Firm-specific data
		Pharma	6,000 MWh	Drug manufacturing	AM (06:00-14:00)	100	10%	Firm-specific data
2	4				PM (14:00-22:00)	150		
2					Night (22:00–06:00)	80		
					Office staff (08:00–16:00)	300		
	5	Paper production	197,290 MWh	Production machinery	AM (06:00-14:00)	250	5%	Firm-specific data
3					PM (14:00–22:00)	175		
J					Night (22:00–06:00)	80		
					Office staff (08:00–16:00)	60		
	6	Manufacturing	4,000 MWh	Compressed air generation	AM (06:00–14:00)	100	30%	Firm-specific data
3					PM (14:00-22:00)	70		
					Office staff (08:00–16:00)	100		
3	7	Building materials	2,000 MWh	Office buildings, HVAC	Office staff (07:30–17:00)	500	12%	Standard load profi
		Energy infrastructure	1,724 MWh	Production machinery	AM (06:00-14:00)	170	3%	Firm-specific data
3	8				PM (14:00–22:00)	30		
					Office staff (07:00–16:00)	140		

 Table 1. Firm-specific modelling inputs from interviewee sample.

We identified six themes that illustrate how our DSS shapes decision making:

1 | Surfacing and managing decision trade-offs:

"What definitely helps is getting guidance on: How large should I dimension my charging infrastructure? What do I need to consider, what kind of costs and savings are actually involved if I incorporate different automation features?" [ID: 5b]

2 | Changing mental models and strategic framing:

"At the moment, we really don't have anything in our discussions - except maybe what we calculate ourselves somehow. But a tool like this would definitely be a huge support, especially if it provides real values based on company-specific data." [ID: 8a]

3 | Facilitating cross-departmental dialogue:

"A lot of what you usually try to explain just in words is shown visually here - and that makes it memorable. (...) And if the question comes up, like: 'Hey, can we add more charging stations or charge more vehicles? What would that look like?' Then this would be a really great way to analyse and present the impacts. It's just an excellent basis for discussion, and everyone would approach it from their own perspective - and I believe that would really help with making a decision." [ID: 6a]

4 | Perceived usability and adoption potential:

"It is clearly laid out, attractive to use, and not overloaded." [ID: 7a]

5 | External validation and credibility:

"I already like that the red curve reflects reality - that's a good start, because I checked in my own program in parallel, and it looks similar." [ID: 4a]

6 | Overwhelm and complexity concerns:

"I can't use something that suddenly overwhelms me with so much information that I can't see the forest for the trees. I actually need to see the specific information that's supposed to come through - clearly and deliberately." [ID: 5b]

- Seger et al. (2025). Firm level optimisation strategies for sustainable and cost effective electric vehicle workplace charging. npj sustain. mobil. transp. 2 (1).
- [6] Peffers et al. (2007). A Design Science Research Methodology for Information Systems Research. J. Manag. Inf. Syst. 24 (3) 45-77.

Optimisation

Visualisation

Marcel Seger
DPhil (PhD) Student
ECI, Oxford University
marcel.seger@eci.ox.ac.uk

